

## Operational Risk: Evidence, Estimates and Extreme Values from Austria

**Stefan Kerbl** 

**OeNB / ECB** 

3<sup>rd</sup> EBA Policy Research Workshop, London

25<sup>th</sup> November 2014

#### **Motivation**

- Operational Risk as the "exotic" risk type
- Definition: "the risk of loss resulting from inadequate or failed internal processes, people and systems or from external events." (Basel Committee 2004)
- Lack of data is the reason why despite increased attention since becoming an official regulatory risk category, operational risk is still widely quantified by crude measures that assume a proportional relationship between annual gross income and operational losses
- Availability bias: scarceness of data leads to lower awareness of operational risk's importance for banks' resilience
- Growing awareness due to the infamous events
  - external events (e.g. devastating tsunamis 2004 and 2011)
  - external fraud (e.g. Madoff investment scandal)
  - internal rough traders (e.g. Société Générale 2008 or UBS in 2011)
  - litigation costs (e.g. BNP Paribas 2014)

#### **Current material risk to banks: litigation costs**

- BNP Paribas pleaded guilty to falsifying business records and conspiracy in connection with sanctions violations and agreed to pay \$8.9 billion, (July 1<sup>st</sup>, 2014)
- Deutsche Bank AG said it expects to log EUR 894 million of litigation costs in the third quarter 2014 (Bloomberg Oct. 25<sup>th</sup>, 2014)
- 12 digit number (hundreds of billions) paid by banks over recent years (LSE Conduct Costs Project 2014)
- High profile cases remain open, like market manipulation (LIBOR fixing, FX), misselling of derivatives to public sector entities and sanctions-breakage
- Recent analyst reports predict expected litigation costs for the biggest European banks over the next few years to exceed EUR 70 bn (Credit Suisse, June 2014)
- The European Central Bank's review of bank balance sheets may not be enough to revive investors' confidence in financial institutions because the test does not address litigation risks, UBS AG Chairman Axel Weber said (Bloomberg, Sep. 18<sup>th</sup>)

"The market has really moved beyond seeing the major risk in banks' balance sheet."

#### Introduction

- We want to fight this imbalance
  - relevance on the one hand and data availability on the other -

by exploring a rich data source

#### Austrian Loss Data Collection,

- Part of the regulatory reporting system
- Banks report their operational risk events over a certain threshold once a year
- Database consists of more than 42,000 loss events, for which we know among other things – the event type, the business line it originated and the loss amount rounded to thousands Euro
- Main research questions:
  - Ideal candidate approaches for fitting severity distributions of operational losses
  - Furthermore, we are interested in statistical characteristics of different event types and business lines
- Paper published in the Journal of Operational Risk, Vol. 9, No. 3, pp. 89-123

#### **First Data Exploration**

- Who reports: Austrian banks and their subsidiaries (not necessarily located in Austria) which calculate their regulatory capital requirement via the Standardized Approach or the Advanced Measurement Approach
  - In total we have 167 banking entities belonging to 20 consolidating entities
- When: The first year of observation is 2007 and the most recent year whose operational losses are reported is currently 2012
- The following table shows a simple cross-tabulation of the frequency of loss events across business lines (BLs) and event types (ETs)

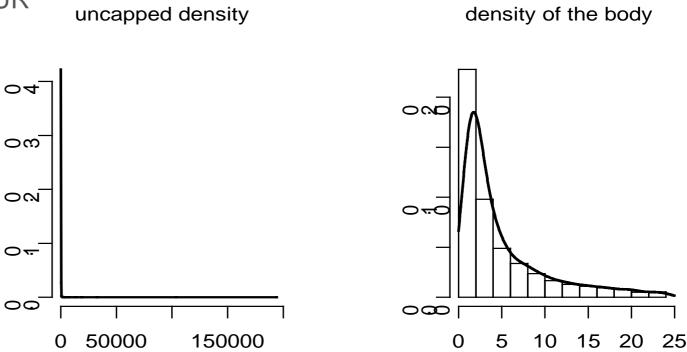
|                       | internal fraud | external fraud | employment<br>practices &<br>workplace<br>safety | clients,<br>products &<br>business<br>practices | damage to<br>physical<br>assets | business<br>disruption &<br>system<br>failures | execution,<br>delivery &<br>process<br>management | other | uns             |
|-----------------------|----------------|----------------|--------------------------------------------------|-------------------------------------------------|---------------------------------|------------------------------------------------|---------------------------------------------------|-------|-----------------|
| corporate<br>finance  | 364            | 88             | 20                                               | 81                                              | 32                              | 22                                             | 202                                               | 0     | 809             |
| trading & sales       | 25             | 85             | 30                                               | 836                                             | 37                              | 201                                            | 1,736                                             | 0     | 2,950           |
| retail banking        | 10             | 22             | 1                                                | 177                                             | 13                              | 93                                             | 415                                               | 0     | 731             |
| commercial<br>banking | 282            | 2,104          | 65                                               | 942                                             | 471                             | 218                                            | 1,843                                             | 0     | 5,925           |
| payment & settlement  | 1,216          | 15,598         | 588                                              | 2,853                                           | 1,330                           | 687                                            | 5,669                                             | 0     | 27,941          |
| agency<br>services    | 33             | 108            | 17                                               | 120                                             | 7                               | 48                                             | 365                                               | 0     | 698             |
| asset<br>management   | 76             | 737            | 5                                                | 261                                             | 47                              | 20                                             | 131                                               | 0     | 1,277           |
| retail brokerage      | 5              | 11             | 3                                                | 45                                              | 24                              | 6                                              | 100                                               | 0     | 194             |
| other<br>sum          | 27<br>2,038    | 137            | 145   874                                        | 511<br>5,826                                    | 687<br>2,648                    | 51<br>1,346                                    | 264                                               | 4     | 1,826<br>42,351 |

| EVENT TYPES                                    | Mode    | Median  | Mean    | Variance   | Excess<br>Kurtosis | Maximum | N             |
|------------------------------------------------|---------|---------|---------|------------|--------------------|---------|---------------|
| Unit of measurement                            | thou. € | thou. € | thou. € | thou. €^2  | thou. €^4          | thou. € | loss<br>cases |
| internal fraud                                 | 2       | 44      | 528     | 4,382,031  | 91                 | 34,000  | 2,002         |
| external fraud                                 | 2       | 5       | 120     | 1,072,583  | 1,157              | 62,134  | 18,598        |
| employment<br>practices &<br>workplace safety  | 2       | 7       | 39      | 95,018     | 455                | 7,500   | 855           |
| clients, products & business practices         | 2       | 4       | 251     | 17,175,456 | 1,189              | 194,267 | 5,537         |
| damage to physical assets                      | 1       | 2       | 5       | 738        | 389                | 747     | 2,631         |
| business disruption<br>& system failures       | 1       | 3       | 17      | 17,993     | 521                | 3,527   | 1,291         |
| execution, delivery<br>& process<br>management | 1       | 3       | 60      | 1,163,399  | 6,963              | 100,000 | 10,611        |

| <b>BUSINESS LINES</b> | Mode    | Median  | Mean    | Variance  | Excess<br>Kurtosis | Maximum | N             |
|-----------------------|---------|---------|---------|-----------|--------------------|---------|---------------|
| Unit of measurement   | thou. € | thou. € | thou. € | thou. €^2 | thou. €^4          | thou. € | loss<br>cases |
| corporate finance     | 2       | 23      | 516     | 6,733,684 | 114                | 34,090  | 770           |
| trading & sales       | 2       | 4       | 119     | 3,802,951 | 2,344              | 100,000 | 2,941         |
| retail banking        | 1       | 2       | 54      | 319,121   | 302                | 10,365  | 719           |
| commercial banking    | 2       | 9       | 464     | 8,088,320 | 793                | 117,557 | 5,751         |
| payment & settlement  | 1       | 4       | 64      | 2,632,275 | 8,829              | 194,267 | 27,386        |
| agency services       | 2       | 3       | 29      | 36,590    | 147                | 2,593   | 682           |
| asset management      | 2       | 5       | 52      | 324,083   | 895                | 18,647  | 1,276         |
| retail brokerage      | 1       | 4       | 67      | 188,077   | 164                | 5,877   | 193           |

#### Let's get some more feeling about the distribution

- For illustration purpose: BL "payment & settlement"
- Values in thou. EUR

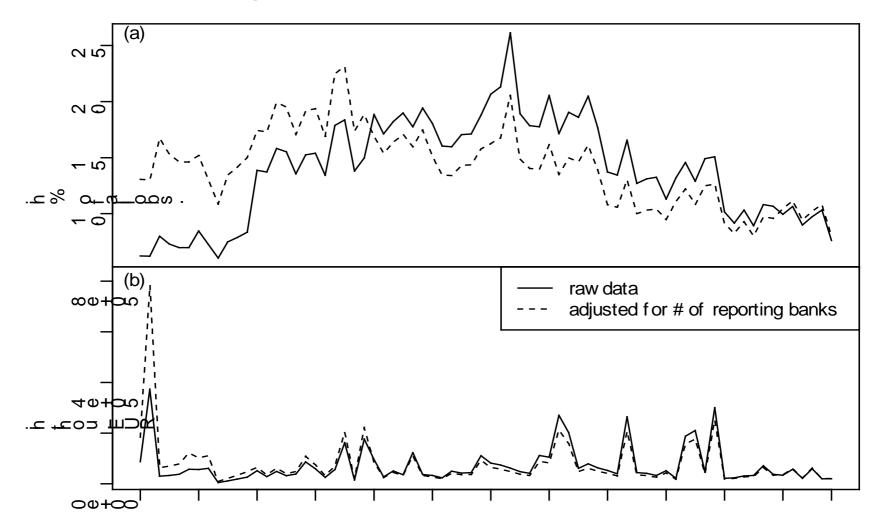

| Quantile<br>Level    | 0.65 | 0.7 | 0.75 | 0.8 | 0.85 | 0.9 | 0.95 | Max     | Mean |
|----------------------|------|-----|------|-----|------|-----|------|---------|------|
| Loss in<br>thou. EUR | 7    | 9   | 12   | 18  | 28   | 52  | 119  | 194,267 | 64   |

- Max lies far to the right
- Mean lies beyond 90% quantile

 $\longrightarrow$  extreme tails in the data

### **Density plots**

- For illustration purpose: BL "payment & settlement"
- X-axis in thou. EUR

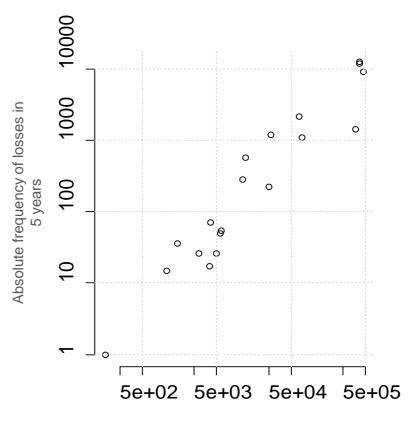



• "L"-shaped density plots if uncapped

16% outside

 Small cap (e.g. discarding 16% of the data) leads to more common rightskewed density plots

#### **Cross Time Analysis**




#### **Cross Section Analysis**

|                                        | Frequency | of Losses | Mean    | Loss    | Total Loss Amount |         |  |
|----------------------------------------|-----------|-----------|---------|---------|-------------------|---------|--|
| Correlation used                       | Pearson   | Kendall   | Pearson | Kendall | Pearson           | Kendall |  |
| Interest receivable and similar income | 0.86      | 0.65      | -0.04   | 0.42    | 0.85              | 0.70    |  |
| Net interest income                    | 0.88      | 0.77      | -0.06   | 0.47    | 0.85              | 0.78    |  |
| Net commission and fee income          | 0.88      | 0.82      | -0.09   | 0.44    | 0.83              | 0.74    |  |
| Operating income                       | 0.85      | 0.75      | -0.08   | 0.37    | 0.79              | 0.70    |  |
| Total assets                           | 0.88      | 0.69      | -0.06   | 0.42    | 0.86              | 0.70    |  |
| Own funds requirement operational risk | 0.89      | 0.82      | -0.07   | 0.51    | 0.83              | 0.84    |  |
| Own funds requirement market risk      | 0.71      | 0.64      | -0.10   | 0.39    | 0.59              | 0.61    |  |
|                                        | 0111      | 11        | 0.10    | 0.00    |                   |         |  |

#### **Cross Section Analysis**

- Cross Section Analysis shows a high dependence of frequency to bank variables
- Total losses (as a result) as well
- OpRisk RWA do a relatively good job (both in terms of linear and rank correlation)
- Mean losses exhibit negative empirical linear correlation coefficients with financial indicators in our database. Rank correlation which is less sensitive to outliers also shows positive but moderate correlation for the mean loss



Own funds requirement for op risk in tsd. EUR

#### **Parametric Distributions**

- For risk quantification, the part that mainly matters is the **tail of the severity distribution**
- This is by definition the area where there is little data
- Theoretical distributions are crucial to better describe the tail
- To maintain enough data points we have to pool the data across banks
- An alternative approach would be to pool across ET and BL, but this would still mean too few observations for some banks and statistical methods
- Results obtained in the first data exploration and in the cross-section analysis suggest that across bank heterogeneity (with regards to size) seems to be less pronounced than the cross ET or BL heterogeneity
- Which distribution fits best?
  - Moscadelli (2004) or Dutta and Perry (2006) fit a range of parametric distributions to collected operational loss data
  - We will focus on (i) the generalized Pareto distribution (ii) the g-and h-distribution and (iii) the modified Champernowne distribution, and – for comparison purpose – lognormal and exponential

#### (1) The generalized Pareto distribution

• Builds on famous theorem of Pickands, Balkema and de Haan, also called the theorem of extreme value theory:

"nearly every tail (=distribution function above certain threshold u) converges to one that can be depicted by"

$$GPD_{\beta,\xi}(x) = \begin{cases} 1 - (1 + \xi x/\beta)^{-1/\xi} & \xi \neq 0\\ 1 - \exp(-x/\beta), & \xi = 0 \end{cases}$$

•  $\hat{\beta}$  and  $\hat{\xi}$  by numerically maximizing the log-likelihood,

$$\ln L(\beta,\xi;X_1,\dots,X_n) = \sum_{\substack{j=1\\j=1}}^n \ln gpd_{\beta,\xi} (X_n)$$
$$= -n\ln\beta - \left(1 + \frac{1}{\xi}\right) \sum_{\substack{j=1\\j=1}}^n \ln\left(1 + \xi \frac{X_j}{\beta}\right)$$

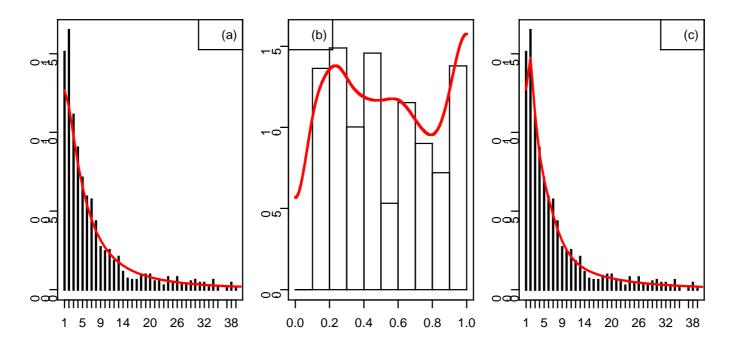
• Fitting  $\hat{\beta}$  and  $\hat{\xi}$  is straightforward. More complicated is the choice of the threshold u

#### (2) g- and h- distribution

• Transformation of the standard normal random variable Z

$$Y_{g,h}(Z) = (\exp(gZ) - 1) \frac{\exp(hZ^2/2)}{g}$$

- Dutta and Perry (2006) introduce the scale parameter B and the location parameter A and define X<sub>g,h</sub>(Z): = A + B Y<sub>g,h</sub>(Z)
- Lacking an explicit density function
- Estimation procedure described first in Hoaglin (1985)


#### (3) Modified Champernowne function

- Proposed first by Buch-Larsen et al. (2005)
- Semi-parametric approach, consisting of 3 steps
- Tries to exploit the flexibility of kernel density estimation with the merits of the Modified Champernowne distribution function

$$T_{\alpha,M,c}(x) = \frac{(x+c)^{\alpha}}{(x+c)^{\alpha} + (M+c)^{\alpha} - 2c^{\alpha}}$$

- *M* corresponds to the median of each dataset
- Parameter c has scale and shape properties depending on  $\alpha$ . When  $\alpha < 1$  higher values of c result in lighter tails and heavier tails when  $\alpha > 1$ . Moreover, when there is a mode ( $\alpha > 1$ ) higher values of c shifts it to the left

# (3) Modified Champernowne function – steps of estimation



- (a) raw data in black and estimated modified Champernowne distribution in red
- (b) data transformed via cdf and kernel density estimator in red and
- (c) back-transformed kernel density in red and (again) raw data in black
- Applied to data of the BL "asset management".

#### **Cross Validation Exercise**

Per BL and ET:

(I) We randomly split the observations in 85% training set and 15% validation set

(II) We randomly draw observations from the training set with replacement as many times as the original number of observations of the ET or BL category. Therefore, each method starts from the same number of observations as in the original fitting above

(III) Based on this sample we fit a GPD, a g- and h- distribution, a density via the Champernowne Approach plus lognormal and exponential

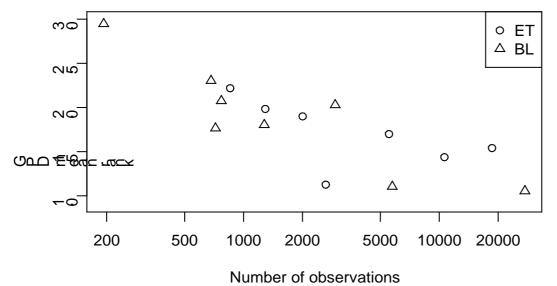
(IV) We compare the log-likelihood of the validation set for all fitted distributions. This gives us a performance indicator of each approach for one cross validation run, which we use to rank them

• We run the steps (I) to (IV) 5000 times

#### **Results of the Cross Validation Exercise**

• Best and second best performer highlighted

| EVENT TYPES                | GPD          | g and h        | mod.Champ. | Exponential | LogNorm |
|----------------------------|--------------|----------------|------------|-------------|---------|
| internal fraud, n=2,002    |              |                |            |             |         |
| mean rank                  | 1.90         | 2.51           | 2.06       | 4.79        | 3.75    |
| external fraud, n=18,598   |              |                |            |             |         |
| mean rank                  | 1.54         | 2.27           | 2.99       | 4.79        | 3.41    |
| employment practices & w   | orkplace s   | afety, n=855   |            |             |         |
| mean rank                  | 2.22         | 3.31           | 3.36       | 4.41        | 1.70    |
| clients, products & busine | ss practice  | s, n=5,537     |            |             |         |
| mean rank                  | 1.70         | 2.11           | 3.81       | 4.80        | 2.58    |
| damage to physical assets  | s, n=2,631   |                |            |             |         |
| mean rank                  | 1.13         | 2.09           | 3.30       | 4.61        | 3.87    |
| business disruption & sys  | tem failures | s, n=1,291     |            |             |         |
| mean rank                  | 1.98         | 1.96           | 3.85       | 4.59        | 2.61    |
| execution, delivery & proc | ess manag    | ement, n=10,61 | 1          |             |         |
| mean rank                  | 1.44         | 2.64           | 4.08       | 4.85        | 1.99    |


| <b>BUSINESS LINES</b>     | GPD    | g and h | mod.Champ. | Exponential | LogNorm |
|---------------------------|--------|---------|------------|-------------|---------|
| corporate finance, n=770  |        |         |            |             |         |
| mean rank                 | 2.07   | 2.51    | 2.15       | 4.59        | 3.67    |
| trading & sales, n=2,941  |        |         |            |             |         |
| mean rank                 | 2.03   | 2.87    | 2.46       | 4.87        | 2.77    |
| retail banking, n=719     |        |         |            |             |         |
| mean rank                 | 1.77   | 2.73    | 3.62       | 4.56        | 2.33    |
| commercial banking, n=5,  | 751    |         |            |             |         |
| mean rank                 | 1.10   | 2.15    | 3.17       | 4.79        | 3.79    |
| payment & settlement, n=2 | 27,386 |         |            |             |         |
| mean rank                 | 1.05   | 3.10    | 4.15       | 4.70        | 2.00    |
| agency services , n=682   |        |         |            |             |         |
| mean rank                 | 2.30   | 2.65    | 3.69       | 4.24        | 2.12    |
| asset management, n=1,27  | 76     |         |            |             |         |
| mean rank                 | 1.80   | 3.06    | 3.65       | 4.68        | 1.81    |
| retail brokerage, n=194   |        |         |            |             |         |
| mean rank                 | 2.95   | 2.60    | 2.89       | 3.69        | 2.88    |

#### **Results**

- In all categories the exponential distribution has the lowest mean rank. This confirms prior research that the exponential distribution is not able to capture operational risk characteristics well in the tail
- Out of the 7 ET and 8 BL considered the GDP is only in the BL "retail brokerage" not among the top two
- Additionally, the GPD impresses by ranking hardly ever last in the comparison to the others. The GPD's highest percentage of last ranks (with exception of retail brokerage) is 12% in the BL "agency services", still significantly below the 20% which would be expected under the hypothesis of equal performance

#### **Results**

• We find obvious negative dependence of the GPD performance *relative* to the others' on the number of observations in each category



• Interestingly, we find that several GPD distributions fitted (for some BL and ET) show a parameter  $\hat{\xi}$  statistically significantly greater than 1. This implies infinite mean (and variance)

#### Conclusions

- Frequency of losses across business lines (BL) and event types (ET) is quite heterogeneous
- Cross-section:
  - operational risk RWA seem to be the best indicator for frequency and also for total loss among the considered indicators. Also, it is interesting to note that in our dataset mean losses are not linearly correlated with banks' size
- Cross Validation of Severity Distributions:
  - confirm the finding of prior research that the GPD is among the best choices in all but one ET and BL. Furthermore, the g- and h- distribution performs very well in fitting operational losses followed by – surprisingly – the relatively simple lognormal distribution
  - the *relative* performance of the GPD compared to other approaches depends strongly on the number of observations