2019 EBA Policy Research Workshop

Determinants of banks' liquidity: a French perspective on interactions between market and regulatory requirements¹

Olivier de Bandt, Sandrine Lecarpentier, Cyril Pouvelle

27 November 2019

¹The opinions expressed in the paper represent the authors' personal opinions and do not necessarily reflect the views of the ACPR - Banque de France or their staff.

Outline

2 Theoretical model

Motivation

The GFC put banks' liquidity risks to the forefront

- Increased attention from the supervisors to stressed banking liquidity but little has been done so far in terms of modelling
 - Main focus on solvency ratios in the literature
 - No agreed and widespread model integrating both components
- Need to better capture some interactions involving liquidity risks: market vs. funding liquidity; solvency and liquidity risks
- Discussion in the economic literature and among regulators regarding the use of liquidity buffers: see Goodhart (2011)'s 'last taxi' argument for the use of banks' liquid assets in crisis times
- ► This paper: Research questions
 - Liquidity shocks and liquidity ratio: What are the determinants of banks' liquidity ratios?
 - ◊ Are banks able to steer their liquidity ratio or does the level of their liquidity depend on the external financial environment?

This paper: contribution

- Estimation of banks' liquidity ratios taking into account interactions between market and funding liquidity (Brunnermeier and Pedersen, 2009)
 - ◊ Theoretical contribution: Partial equilibrium model including both liquidity and solvency: banks' profit maximisation under both constraints
 - ♦ Empirical contribution: simultaneous equations and IRFs
- Possible operational use as a Top-Down liquidity ST, use of a truly binding liquidity ratio (in contrast with Van den End and De Hann, 2011; Tabak, 2013; Cont et al., 2019)
- Interactions between liquidity and solvency from a quantity perspective (vs. price perspective: funding costs, BIS, 2015; Schmitz et al., 2019)

This paper: Main findings

- Ositive effect of the solvency ratio on the liquidity coefficient
- Negative impact of the financial risk variables, only during periods of high stress
- ◊ Cash net outflows more impacted than the amount of liquid assets by financial risk variables in stress times

Theoretical model

 \Rightarrow Objective: determining optimal share of marketable securities in a bank's balance sheet

Assets = A		Liabilities = L	
L r'		D	r ^d
G	r ^g	Κ	r ^k
Total = A		Total = L = A	

with the following inequalities: $r^d < r^g < r^l < r^k$

 Maximization of a representative bank's profit (Freixas and Rochet, Fraisse et al.)

$$\max_{G,L} \pi = r^{I}L + r^{g}G - r^{d}D - \frac{\gamma}{2}(\sigma_{G}^{2}G^{2} + 2\sigma_{GL}GL + \sigma_{L}^{2}L^{2}) \quad (1)$$

Introduction	Theoretical model	Empirical estimations	Conclusion
Theoretical	model		

► The **balance-sheet** constraint:

$$L + G = K + D \Leftrightarrow D = L + G - K \tag{2}$$

► The **leverage** constraint:

$$K \ge \eta D$$
 (3)

► The **liquidity** constraint:

$$\beta G + (1 - \beta)\phi(s)G \ge \alpha(s)D \tag{4}$$

- $\diamond \beta$ the share of marketable securities maturing
- $\diamond \phi(s)$ the fraction of the book value of the assets that are not maturing at $t \to$ liquidity of the bank's assets
- $\diamond \alpha(s) < 1$ the outflow rate on the liabilities

Theoretical model

- ▶ 2 possible hypotheses for the definition of G* and L*:
 - In the worst occurences of the state of nature, the liquidity constraint is binding and banks hoard additional liquidity.

 \rightarrow When the liquidity constraint is binding (λ >0), the demand for G increases as λ is multiplied by a positive term $(A = (\frac{\beta + (1-\beta)\phi}{\alpha} - 1) > 0)$. The covariance term σ_{GL} implies that the holdings of G and L are closer.

 In the worst occurences of the state of nature, the liquidity constraint is not binding and banks may reduce their liquidity ratio.

 \rightarrow In that case, α is small so that L and G are determined by the Markowitz portfolio as the liquidity constraint is not binding.

From model to data

- ► 2 conclusions of the model:
 - (i) liquidity and solvency are complementary: they reinforce each other;
 - ◊ (ii) banks accumulate liquid assets in crisis times (they exhibit a liquidity hoarding behaviour) but only when the liquidity regulation kicks in.
- ▶ The main variables of interest in our empirical model will be:
 - the bank's liquidity ratio;
 - ◊ the bank's solvency ratio;
 - \diamond a proxy for marketable securities' liquidity $\phi(s)$.

Database	Introduction	Theoretical model	Empirical estimations	Conclusion
	Database			

▶ Liquidity ratio - solo basis: Liquidity coefficient as a proxy for LCR

$$Coef \ Liq_{it} = \frac{\Sigma \ Weighted \ Liquid \ Assets_{it}}{\Sigma \ Weighted \ Net \ Outflows_{it}} \times 100$$

Solvency ratio - solo basis: Risk-weighted capital ratio

$$Cap \ Ratio_{it} = \frac{Own \ Funds_{it}}{Risk \ Weighted \ Assets_{it}} \times 100$$

- ▶ Bank's balance sheet variables: ACPR supervisory databases
- ► Macroeconomic variables : public databases (INSEE, Bloomberg)

 \Rightarrow Unbalanced panel dataset of 725 banks solo, 102 periods (1993 - 2015) and more than 23,000 observations after cleaning

Descriptive statistics

Figure : Liquidity Coefficient and Solvency Ratio over 1993-2015

- Liquidity coefficient and solvency ratio little binding
- $\diamond\,$ A very large dispersion in the liquidity coefficient
- $\diamond\,$ A more concentrated distribution of the solvency ratio

The liquidity coefficient as a proxy of the LCR

▶ LCR only reported consistently since its implementation in 2015

- \rightarrow Use of the liquidity coefficient as a proxy
- ▶ Main differences between the LCR and the liquidity coefficient:
 - ◊ Consolidated vs. solo basis
 - ◊ Treatment of intragroup exposures and off-balance sheet items
 - ◊ Weights
 - $\diamond~$ Stricter definition of liquid assets in LCR
- ▶ Is the liquidity coefficient a good predictor of the LCR?
 - ♦ Analysis of the correlation between LCR and LC
 - $\diamond\,$ Regression of the LCR over the LC components in gross terms

Econometric approach: Simultaneous equations

Liquidity and solvency ratios are endogenous: use of 2SLS regressor

$$Y_{i,t} = \alpha_i + \phi Y_{i,t-1} + \beta X_t + \gamma Z_{i,t-1} + \epsilon_{i,t}$$
(5)

with:

- Y a vector of two endogenous variables (liquidity coefficient and solvency ratio);
- X a vector of explanatory variables including aggregate financial risk variables, macroeconomic variables and dummy variables;
- Z a vector of bank-specific variables;
- α_i a vector of individual bank fixed effects;
- e the vector of error terms.
- *i* referring to bank *i* and *t* to time *t*.

Results of the simultaneous equations estimation

coefficient for solvency
)
f solvency on liquidity
teraction between
liquidity
) F

Results of the simultaneous equations estimation

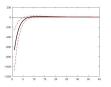
VARIABLES	Liquidity ratio	Solvency ratio	
Liquidity ratio (t-1)	0.625***	0.000***	
	(0.005)	(0.000)	(
Solvency ratio (t-1)	5.202***	0.891***	
	(0.643)	(0.003)	
Vix	-0.124	-0.000	
	(1.012)	(0.005)	
Interbank	-4.659	-0.064	
	(13.505)	(0.062)	1
GDP	-10.944**	-0.050**	
	(5.109)	(0.023)	
Inflation	3.806	-0.119**	
	(10.854)	(0.050)	
Size (t-1)	-281.002**	-0.163	
	(129.351)	(0.594)	
Retai _{i,t-1}	0.214	-0.003	
	(0.710)	(0.003)	
RoE _{<i>i</i>,<i>t</i>-1}		0.002	
		(0.003)	
2010 Dummy _t	-82.922***	0.552***	
_	(22.240)	(0.102)	
Constant	935.021**	1.152	
	(374.204)	(1.719)	
Bank Fixed effects	Yes	Yes	
Observations	23,264	23,264	
Adjusted R-squared	0.767	0.947	

High level of AR coefficient for solvency
(but no unit root)
Positive impact of solvency on liquidity
\rightarrow Evidence of interaction between
solvency and liquidity

No significant impact of aggregate financial risk variables

Results of the simultaneous equations estimation

VARIABLES	Liquidity ratio	Solvency ratio	
			-
Liquidity ratio (t-1)	0.625***	0.000***	High level of AR coefficient for solvency
	(0.005)	(0.000)	(but no unit root)
Solvency ratio (t-1)	5.202***	0.891***	Positive impact of solvency on liquidity
	(0.643)	(0.003)	\rightarrow Evidence of interaction between
Vix	-0.124	-0.000	solvency and liquidity
	(1.012)	(0.005)	
Interbank	-4.659	-0.064	No significant impact of aggregate financial
	(13.505)	(0.062)	risk variables
GDP	-10.944**	-0.050**	Negative impact of GDP growth
	(5.109)	(0.023)	
Inflation	3.806	-0.119**	Negative impact of π (solvency only)
	(10.854)	(0.050)	
Size (t-1)	-281.002**	-0.163	Negative impact of size (liquidity only)
	(129.351)	(0.594)	
Retai _{i,t-1}	0.214	-0.003	
	(0.710)	(0.003)	
$RoE_{i,t-1}$		0.002	
		(0.003)	
2010 Dummy _t	-82.922***	0.552***	
	(22.240)	(0.102)	
Constant	935.021**	1.152	
	(374.204)	(1.719)	
Bank Fixed effects	Yes	Yes	
Observations	23,264	23,264	
	0.767	0.947	
Adjusted R-squared	0.707	0.947	16


Impact of financial variables during high stress periods

VARIABLES	Liquidity ratio	Solvency ratio	-
Liquidity ratio _{i,t-1}	0.625***	0.000***	
Solvency ratio _{<i>i</i>,<i>t</i>-1}	(0.005) 5.186***	(0.000) 0.891***	
Vix	(0.643) 0.785	(0.003) -0.003	Obj: Interaction terms to
Interbank _t	(1.379) -14.631	(0.006) -0.362***	capture nonlinear effects
-	(22.555) 277.724*	(0.104) 1.434*	
d_high_vix _t	(162.366)	(0.746)	
d_high_interbank _t	423.997** (171.167)	-1.903** (0.787)	
Vix * d_high_vix	`-7.330*´ (4.075)	-0.025 (0.019)	Liquidity negatively impacted by both financial variables
Interbank * d_high_interbank	-151.619** (75.753)	1.166*** (0.348)	Solvency positively impacted by interbank spread
Macroeconomic variables	Yes	Yes	
Bank controls	Yes	Yes	
2010 Dummy	Yes	Yes	CCL: Nonlinear relationship between
Constant	Yes	Yes	financial variables and regulatory ratios
Bank Fixed Effects	Yes	Yes	ightarrow Stronger during high stress periods
Observations	23,264	23,264	
Adjusted R-squared	0.767	0.947	17

Various robustness tests

- Less liquid / less capitalised banks
 - $\diamond~$ No significant impact of the financial variables
- ► Contribution of a banking group membership
 - Positive impact of spread on solvency if group membership
 - Negative impact of financial variables if excess of liq/cap for the group
- ▶ Heterogeneous effects: the effect of banks' type
 - Higher sensitivity of the solvency ratio of commercial banks
- Disentangling numerator and denominator of the liquidity coefficient
 Liquidity stress transmission through unstable liabilities

Orthogonalised Impulse-Response Functions from VAR(1)

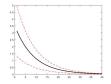


Figure : Spread shock (400bp) on liquidity

Figure : Spread shock (400bp) on solvency

Figure : Vix shock (80bp) on liquidity Figure : Vix shock (80bp) on solvency

 \rightarrow Liquidity ratio negatively affected by the VIX/spreads shocks \rightarrow Solvency ratio negatively affected by the VIX shock, but positively affected by the spreads shock

Conclusion


- Evidence of a one-way relationship from solvency to liquidity ratios;
- Negative impact of the financial variables, only when interacted with high risk aversion periods and large spread periods, with a larger adverse effect on liquidity than solvency;
- Financial risk channel materialising mostly on the liability side (net cash outflows);
- No evidence of liquidity management at group level, despite evidence of capital management;
- Commercial banks are the most affected by the financial risk variables, mainly on the solvency side.

Conclusion

► Possible extensions:

- Adding some dynamics in our model by including funding costs and modelling the price impact of banks' fire sales;
- Conducting a panel estimation based on LCR data once the series are long enough to compare the effects of financial stress across countries;

Annexes

