

8th Policy Research Workshop European Banking Association 27 November 2019

Simulating liquidity stress in the derivatives market

Marco Bardoscia, Gerardo Ferrara, Nicholas Vause, Michael Yoganayagam

Any views expressed are solely those of the authors and so cannot be taken to represent those of the Bank of England or any other institution with which the authors may be affiliated or associated. This presentation should therefore not be reported as representing the views of the Bank of England or members of the Monetary Policy Committee, Financial Policy Committee or Prudential Regulation Committee.

Background

- Derivative contracts are increasingly collateralised
 - Less counterparty credit risk
 - But risk of liquidity strains when large collateral calls?
- Two main sources of collateralisation
 - Variation margin (VM): offsets changes in exposure due to daily price movements
 - Initial margin (IM): offsets potential exposures (mainly collected at outset of trades)

Basic idea

- Scenario: shock to risk factors, e.g. interest rates and exchange rates
- Values of derivative contracts change
 - Counterparties on the 'wrong' side of changes get VM calls from those on the 'right' side
- Institutions can meet VM calls with their cash buffers and any cash inflows from VM payments to them
- Institutions that are not able to meet VM calls in full need to take some defensive action, e.g. borrow in repo market or liquidate assets
 - These defensive actions impose costs on others ('externalities')

Scenario

Changes in main swap rates (basis points)

Changes in main FX rates (%)

				Residual maturity (months)										
Currency	1	3	6	9	12	24	36	60	84	120	180	240	360	_
EUR	-16	-18	-19	-21	-22	-24	-24	-22	-19	-16	-13	-12	-11	
USD	28	39	54	71	85	115	141	175	187	191	193	194	196	
GBP	-24	-23	-22	-22	-21	-20	-20	-19	-17	-14	-13	-11	-6	
AUD	-18	-21	-25	-29	-31	-38	-40	-40	-37	-36	-36	-37	-39	
JPY	-9	-10	-11	-11	-12	-15	-16	-16	-16	-17	-17	-18	-20	
CAD	42	44	52	57	60	65	72	87	92	92	87	82	76	

_			EUR	USD	GBP	AUD	JPY	CAD
	>	EUR						
Base currency	suc	USD	2.2					
	urre	GBP	-1.6	15				
	e Ci	AUD	-9.8	5.3	-8.4			
	asi	JPY	14.1	13.8	-1.1	7.5		
		CAD	-5.4	10.5	-3.9	4.7	-2.9	

Portfolio coverage

DTCC and Unavista data

- At least one UK counterparty
- As of end-Sept 2017
- 3m outstanding trades

Global notional amounts covered / non covered in analysis

Liquid asset buffers (LAB)

 t = 0 (9:00 AM): payments to the CCP are due

t = 0 (9:00 AM): payments to the CCP are due

 t = 0 (9:00 AM): payments to the CCP are due

- t = 0 (9:00 AM): payments to the CCP are due
- *t* = 1 (9:30 AM): the CCP pays its CMs

- t = 0 (9:00 AM): payments to the CCP are due
- *t* = 1 (9:30 AM): the CCP pays its CMs

- t = 0 (9:00 AM): payments to the CCP are due
- *t* = 1 (9:30 AM): the CCP pays its CMs

- t = 0 (9:00 AM): payments to the CCP are due
- *t* = 1 (9:30 AM): the CCP pays its CMs
- t = 2 (until close of business): CMs settle bilateral VM calls

- t = 0 (9:00 AM): payments to the CCP are due
- *t* = 1 (9:30 AM): the CCP pays its CMs
- t = 2 (until close of business): CMs settle bilateral VM calls
 - CMs that have enough cash to make a full payment will pay

- t = 0 (9:00 AM): payments to the CCP are due
- *t* = 1 (9:30 AM): the CCP pays its CMs
- t = 2 (until close of business): CMs settle bilateral VM calls
 - CMs that have enough cash to make a full payment will pay

- t = 0 (9:00 AM): payments to the CCP are due
- *t* = 1 (9:30 AM): the CCP pays its CMs
- t = 2 (until close of business): CMs settle bilateral VM calls
 - CMs that have enough cash to make a full payment will pay
 - CMs that don't have enough cash to make a full payment will wait

- Nobody in this triangle can make a full payment, so they all end up borrowing
- We break the shortfalls into three components:
 - Domino: Shortfall only because counterparties did not pay
 - (1) Avoidable: A central authority could direct loops of (partial) payments
 - (2) Unavoidable: No such loops
 - (3) Fundamental: Shortfall even if all counterparties had paid in full

Liquidity shortfalls

Liquidity shortfalls at different corporate groups

Versus daily cash borrowing in USD + EUR + GBP repo markets = c. \$650 billion

Summary

- Toolkit for simulating liquidity shortfalls due to margin calls
 - Present: liquidity shortfalls appear manageable
 - Future: useful to monitor risk by periodically updating simulations
- With further calculations, our toolkit also shows
 - Who contributes most to aggregate liquidity shortfalls
 - Effect of market structure changes on potential shortfalls
- Toolkit could be enhanced with
 - Additional scenarios
 - Additional derivative types (but increasingly complex to value)
 - Additional counterparties (but raw data in other jurisdictions)

