
Seclending Chain
A Blockchain Experimentation at Banco de Portugal

André Leal, João Rodrigues, Nuno Pereira
Banco de Portugal

October 25, 2020

Abstract

This paper presents the work done by Banco de Portugal (BdP) re-
garding the experimentation on Distributed Ledger Technologies (DLT),
more specifically on blockchain. The main goal of this work is to better
understand the differentiating capabilities of this novel technology, the
challenges from a Central Banks perspective and learn on how to develop
and deploy blockchain based solutions. It also aims to understand how
those developments can be further integrated within the current BdP’s
enterprise technology ecosystem.

Detailed information is provided regarding on how the internal exper-
imentation was conducted, from the identification of a relevant use case
named “Securities lending”, to its development and final deployment.

For this experiment, BdP used Hyperledger Fabric 1.3 blockchain
platform and deployed it on a private DLT environment. A CLI, REST
API and Web interface were also developed, being the latter implemented
on a low-code platform named OutSystems.

The network was further extended to other National Central Banks
(NCB) - De Nederlandsche Bank and Oesterreichische Nationalbank. The
challenges faced regarding the extension of the network to those NCB’s
are also highlighted.

This experimentation increased BdP’s knowledge on blockchain tech-
nology and distributed peer-to-peer networks. The usage of an Experi-
mentation Framework along with automated scripts resulted on faster
and more meaningful results.

Keywords: Blockchain, Distributed Ledger Technology, Securities lending,
Hyperledger Fabric, National Central Bank, Banco de Portugal

1



1 Introduction

The current payment ecosystem, as we know it, is being challenged. The
appearance of crypto-assets 1 – being bitcoin the best known example – has
proved that it is possible to have a completely fully functional decentralized
payment system on a peer-to-peer based model, without the need to have
a centralized entity responsible and accountable for managing transactions
within the system. Blockchain is a specific implementation of a Distributed
Ledger Technology (DLT) enabling the development of distributed solutions,
being crypto-assets often supported by this technology.

Bearing in mind the potential of the technology and the appearance of
new disrupting business models, especially on Fintech areas, BdP and also
other National Central Banks from the Eurosystem, have started to look into
this new world of distributed solutions to better understand the implica-
tions underneath the technology, as well as its new capabilities, limitations,
implications, possible scenarios and use cases.

BdP believes that DLT and related platforms and technologies could be
disruptive within the current capabilities of NCBs, especially with functions
related to Money Market Operations.

Therefore, it was considered important to follow up on DLT and blockchain
trends to raise our basic knowledge on both technical aspects and generic
capabilities.

Following the work developed in closed collaboration within the Eurosys-
tem System of Central Banks 2, and motivated to better understand the tech-
nology, Banco de Portugal decided to start an internal experimentation with
the following proposed goals:

• Extend Banco de Portugal knowledge on blockchain capabilities and
related technologies.

• Identify one candidate use case that could take advantage of blockchain
technology.

• Create a BdP DLT infrastructure to support the experimentation.
• Explore the development and deployment of smart contracts for the

chosen use case.
• Explore the development and deployment of different types of interfaces

for further integration with current BdP’s ecosystem.
• Assess the extensibility of the use case itself.

Given BdP’s low maturity with the associated platforms and technology to
be used, it was decided to start with a simple use case that could benefit from
blockchain unique capabilities. Specifically, the characteristic of decentraliza-
tion between distinct Organisations, highlighted the importance to look at a
use case that could also be relevant to other NCBs, increasing opportunities
for further collaboration. As such, it was decided to harvest a low risk-based
business function.

The aim of this paper is to contribute to shorten the learning curve when
entering the world of distributed solutions by showing the work developed

1Commonly known as crypto-currencies although it does not fulfil currency’s definition
2The ECB prompted the creation of such collaboration group - EUROChain - as a learning

tool for all interested NCBs to explore and share experiences on DLT

2



by Central Bank of Portugal internally and the results of the extended collabo-
ration with De Nederlandsche Bank and Oesterreichische Nationalbank.

In the end, a section with the takeaways is available, where the main
learnings from this experimentation are highlighted. A section with the next
steps is also present with relevant challenges that can be further explored.

2 Distributed Ledger Technology (DLT)

Distributed Ledger Technology (DLT) is a rapid growing technology where
the database – a ledger - is shared across several entities, each one having its
own copy [1]. These digital systems are characterized for being immutable
as once a transaction is recorded on the ledger it is mathematical infeasible to
tamper that given record.

As a distributed technology there is no central point of authority responsi-
ble for ensuring the proper system operation. This responsibility is demateri-
alized in the network as a whole.

2.1 Blockchain vs DLT

The concepts of blockchain and DLT, although incorrectly, are often used
interchangeably. DLT represents a broader concept of having a shared and
distributed ledger across a network where the typology and implementation
of the ledger is out of scope. Blockchain is a specific DLT implementation
where the ledger is composed of chains of blocks of data, cryptographically
connected [2]. Blockchain is the most known DLT implementation, much due
to the amount of crypto-assets that are supported on it. Nevertheless, there are
other possible implementations such as Hash Graph based DLT - Distributed
Hash table (DHT) [3, 4] or Directed Acyclic Graph (DAG) [5].

Therefore, every blockchain system is a DLT system, but the opposite is
not true. This work will focus on blockchain as it was the specific technology
used for the experimentation.

2.2 The value of trust

In a world of distributed collaboration, trust is always a central point of
discussion. Blockchain technology redefines the concept of trust, allowing
new collaborations between Organisations without the need to explicitly set
trust relations between them or with other third-party intermediaries [6]. Each
Organisation needs only to trust the network as a whole. The trust mechanisms
are built around cryptography and mathematical proven algorithms, which
ensures that each transaction is correctly executed3.

2.3 Blockchain vs Database

Blockchain can be seen as a distributed, digital system of records, where
the main goal is to store information. Databases, although having the same
purpose, are a very different kind of technology [7].

3More information available on chapter ’3.5 Consensus’

3



Authority

Blockchain doesn’t have a centralized, single point of authority. In a blockchain
implementation, the network is responsible for every decision. However, in
some blockchain implementations, such us permissioned blockchains, there
may be some form of centralization.

Databases, on the other hand, have normally a centralized authority, com-
monly associated with the notion of an administrator.

Data Handling and Integrity

Databases support CRUD operations allowing the information to be updated
without ensuring historical traceability. With blockchain all data is typically
recorded as unique transaction. Therefore, it is mandatory to read all ledger’s
records in order to have access to the full system. Blockchain platform do not
support neither update or delete operations on existing transactions, being
read and write the only ones available. Such model contributes directly for
achieving immutability.

Transparency

By default, blockchain offers transparency as the ledger is fully available to
every participant. In some implementations the information in the ledger may
be encrypted. In Databases, on the other hand, the access to the information is
normally granted by a central authority, namely the administrator.

Cost

Blockchain, due to its novelty, has a considerable learning curve, which
requires a higher investment when compared to mature technologies like
Database systems. In the future the cost of implementation between the two
technologies may shorten as it is expected that future offers will evolve to
provide blockchain capabilities as a service, thus reducing the actual cost.
Nevertheless, the cost will likely be always higher because of the complexity
of implementing fully distributed and decentralized systems.

Performance

Blockchain has typically lower performance when compared with Databases,
mainly on public blockchains. This is normally related to the specificities of
the consensus mechanism used, which tends to be very costly4.

3 Demystifying Blockchain Concepts

When reading information regarding blockchain, it is common to be exposed
to a considerable amount of many different concepts. This chapter summarizes
the most frequent ones, allowing newcomers to better understand the use

4The cost may be represented in time, processing power, stake, etc.

4



and applicability of the platforms and technology along with the references
through the document.

3.1 Permissioned vs Permissionless Blockchain

Blockchain technology is often associated, sometimes exclusively, as a permis-
sionless network topology. This has been the result of its historical association
with bitcoin. However, when Organisations started to look on blockchain
concepts from an enterprise perspective, trying to take advantage and bene-
fits from its associated capabilities, a demand for a new topology was born -
permissioned network.

Public and private networks are often used interchangeably as synonyms
for permissionless and permissioned networks respectively [8]. On a permis-
sionless network, any identity can participate on the network. This means
that anyone can access the ledger, submit and validate transactions on the
network. In order to keep the network running, the use of a token is required
(e.g.: Ethereum [9] has the ETH token) as a form of incentive to the community
that is using and maintaining it.

Permissioned networks, although using the same set of capabilities, only
allow participation from known identities. Only those identities are able to
access to the ledger and execute operations. This specific characteristic makes
this network topology the preferable choice for Organisations trying to lever-
age blockchain as an enterprise solution, where distinct but known entities
create a distributed ecosystem, sharing then a distributed responsibility.

When compared to a permissionless network, the greatest advantage of
a permissioned network is performance. Because the network is restricted
to known Organisations, it is possible to use simpler consensus mechanisms
as part of a Byzantine Fault Tolerance (BFT) solution to still run a safe and
tamper-proof ledger in the absence of any central control. As such, these
network topologies are less distributed.

A permissioned network is essentially a blockchain topology with some
definition of trust by design. This makes the network simpler and more
performer, but with a greater risk of compromising immutability.

Some of the most known activity sectors and business models that may
benefit from this technology capabilities are the supply chain sector [10], the
financial sector (e.g.: JPCoin [11]) and payment systems [12]. Other use cases
that could leverage on blockchain technology are related to “Digital Identity”
[13], “Reference Data” (e.g.: MADRE5) and "Gaming" (e.g.: Cryptokitties6),
among others.

3.2 Network, Nodes, Organisations and Peers

In its simple design, a DLT network is a combined set of connected nodes
sharing a common ledger and a smart contract implementation for enforcing
the agreed business rules.

5https://www.banque-france.fr/en/banque-de-france/about-banque-de-france/le
-lab-banque-de-france/banque-de-france-labs-achievements

6https://www.cryptokitties.co/

5

https://www.banque-france.fr/en/banque-de-france/about-banque-de-france/le-lab-banque-de-france/banque-de-france-labs-achievements
https://www.banque-france.fr/en/banque-de-france/about-banque-de-france/le-lab-banque-de-france/banque-de-france-labs-achievements


A node is a single point on the network that is associated to a given entity
or Organisation. Depending on the role, a network node may be exclusively
allowed to read the information on the ledger or be able to submit and accept
new transactions.

On some blockchain implementations the notion of a peer might exist. In
those implementations each Organisation is composed by one or more peers,
which are no more than nodes related with the same entity. Those nodes are
deployed and operate in parallel in order to improve the performance and
resiliency of the network.

3.3 Ledger

The ledger is the digital system of records of a DLT network. On blockchain
- one of the most common ledger implementations - the ledger is composed
by a sequence of blocks of transactions chained together through the use of
hashing functions7. In order to make the chain work, each block needs to have
a pointer to the identifier of the next block.

3.4 Smart contracts

Smart contracts are a digital piece of code that implements the business rules
by which the DLT network should run. The name came from the demateri-
alization of contracts on a digital and smart way, transposing the physical
contractual obligations into the DLT network [1]. The contracts represent all
the functions that can be executed – from the requirements to the end results.

Since every node on the network runs the same smart contract, each
transaction is enforced to be executed accordingly. Such behaviour assures
that it is impossible for the network to propose or accept transactions that do
not respect the running smart contract.

3.5 Consensus

Since a DLT network does not have any kind of intermediary responsible
for ensuring the proper execution of the network and deciding if any given
transaction is valid, the execution of any smart contract must be accepted by
the remaining entities on the network, according to a specific policy. If the
policy is fulfilled than a consensus is achieved between those entities – and
that specific transaction is considered valid and broadcasted to all nodes.

Consensus algorithms ensure that transactions submitted to the network
are executed on every node of the network, on the same exact order. Several
algorithms can be used to implement consensus, but there are significant
differences between permissioned and permissionless networks [8].

Permissionless Networks

The most known permissionless distributed networks’ consensus algorithms
are Proof of Work (POW) [14] and Proof of Stake (POS) [15].

7More information in Chapter ’3.6 Cryptography’

6



Proof of Work is the consensus mechanism implemented on bitcoin. In
short, this consensus algorithm demands that, for a given block of transactions
to be accepted by the network and thus chained to the existing ledger, some
entity must first solve a very computational demanding problem. This process
is known as mining. Only then the block can be sent to the remaining network
as being the new truth. The network can easily validate the new block by
checking if the mathematical problem was correctly solved. This consensus
algorithm assumes that for a given block to be added to the ledger, a specific
amount of computational work needed to be done. The same is true when
someone wants to update the information of an already submitted block. Such
task will require the update not only of that block but also the whole chain of
blocks, thus requiring more work to be done. Therefore, older blocks will be
in longer chains, making it harder to change the truth.

On Proof of Stake the concept is similar to the Proof of Work, but instead of
processing power, a stake is used. This means that the bigger the stake ("coin"
of the system) an entity has on the network, the higher its validation power is.

Permissioned Networks

On a Permissioned network topology, any possible violation on the network
can be resolved with contractual obligations that already exist outside of
the network [1]. Although applying consensus algorithms on permissioned
networks could be seen as a redundant feature, as each node is known and
authorized in advanced, this mechanism can still be used to increase the
resilience of the network.

Simpler consensus mechanisms can be employed, such as the Practical
Byzantine Fault Tolerance (PBFT) [16]. This algorithm is commonly used on
distributed systems to improve their resilience assuming the presence of f
malicious nodes, as long as the whole system is of size 3f + 1.

3.6 Cryptography

One of the intrinsic characteristics of blockchain is immutability 8. An im-
mutable DLT network assures that whenever a transaction is written to the
ledger, chained to a block and further disseminated through the network, it
becomes mathematically infeasible to change it.

Cryptography is then essential to ensure the security of the network and
also its immutability. To achieve that, DLT systems use a specific cryptographic
technique called Hashing.

Cryptographic hashing [17] transforms any given type of information,
no matter its size, into a fixed length unique identifier. One characteristic is
that even the slightest change on the input information - for instance adding
a comma - results on a totally different unique identifier as the end result.
Another characteristic is irreversibility, which means that although it is very
easy to apply a hash function and produce the unique identifier - resulting on
a fast validation as well - the reverse operation is computational infeasible.

8Although considered immutable (tamper-proof), blockchain networks can still be tampered.
The hardness for achieving such result is what grants the immutable condition to blockchain
platforms (See more in ’3.7 Double Spending and the 51% attack’)

7



On blockchain each block has a unique identifier as the result of applying
the hash function on its own information. Each block also has the hash
identifier of the previous block, thus creating a chain reference. If the data
on a given block is tampered, its unique identifier would become completely
different, breaking the chain sequence, as the following block would have
an invalid reference to its precedent block. Therefore, for the tampering to
be accepted, the intended block needs to be changed along with every single
block that follows the whole chain.

Other techniques like encryption and signatures are used to further protect
the confidentiality of the information inside the blocks. It is also used to
identify the entities (nodes) that can access the network.

3.7 Double Spending and the 51% attack

One of the most known attacks on blockchain networks, both permissioned
and permissionless, is known as the Double Spending attack. As the assets are
digitized and thus dematerialized on a blockchain network, it is possible to
try to use the same digital asset on two separated transactions. This attack is
mitigated by combining the characteristics of immutability of the ledger, the
use of strong consensus algorithm and the execution of smart contracts.

Using proof of work for instance, it is mathematical infeasible for the same
Organisation to be able to compute two concurrent transactions9 faster than
the time needed to generate new blocks by the remaining network nodes. This
means that it is very unlikely that a given entity could change an already
accepted block and future ones10 faster than the remaining network.

The 51% attack simply states that if a given entity or group of entities
has in their possession 51% of the processing power of the network, then
the probabilities to decide the next block to be written to the network are
higher. If this entity or group is maleficent, the successful execution of a
double spending attack is more likely. With proof of Stake algorithms this
attack can also be achievable by having 51% of the stake of the entire network.

4 Blockchain Platforms

As with any other technology, a proper platform is required to develop suitable
solutions. This experimentation was developed using the IBM Hyperledger
Fabric platform. The choice is mainly related to BdP’s experience on previ-
ous collaborations within the ESCB community and better alignment with
enterprise solutions by leveraging on a permissioned network topology.

This section will dive into Hyperledger Fabric concepts and components.
A short context will be given on other platforms available on the market.

9A given asset is spent on the first and second block. Since the blocks were compute by the
same entity, it can choose to "replace" the first block with the second, resulting in a chain fork
and thus, spending the same asset twice

10In order to have the longest chain of the network

8



4.1 Hyperledger Fabric

Hyperledger is a multi-project hosted by the Linux Foundation with contribu-
tions from IBM. It supports the development of open source and collaborative
blockchain platforms and tools.

One of the available projects is called Hyperledger Fabric, a permissioned
blockchain platform supported on a modular architecture [18]. It is designed
to be a versatile solution supporting pluggable implementations for its various
components and deployable through docker containers.

An Hyperledger Fabric network is composed by the following key compo-
nents [19]: Organisations, Orderer service, ledger, World State View, channels,
chaincode, consensus algorithm and Certificate Authorities. In order to inter-
act with the network one can also use the available SDKs.

Organisations and Peers

Organisations are the entities responsible for creating the blockchain network.
They are the ones who manage and contribute with resources, such as partici-
pants entities and peer nodes to run the network 11. being this a permissioned
network, each Organisation and all its participants are well known.

Figure 1: Hyperledger Fabric Architecture (simple view)

Peers, also called nodes 12, belong to the Organisations and are the ones
who connect all the various Organisations within it. They are also the ones
who run the chaincode and store the ledger. Each Organisation may have

11https://hyperledger-fabric.readthedocs.io/en/release-2.2/peers/peers.htm
l#peers-and-organizations

12On this document, peer and node are used interchangeably

9

https://hyperledger-fabric.readthedocs.io/en/release-2.2/peers/peers.html#peers-and-organizations
https://hyperledger-fabric.readthedocs.io/en/release-2.2/peers/peers.html#peers-and-organizations


more than one peer for performance or resilience reasons. Some peers are
able to validate and endorse transactions. In those situations, they are called
Endorsing Peers.

Consensus

Consensus is the algorithm which ensures that each node on the network
agrees and has the same understanding of what is the correct order of the
submitted transactions. On Hyperledger Fabric the consensus mechanism is
coupled to the Orderer service typology.

Orderer

On permissionless ledger networks, like bitcoin for example, any node can
participate to establish consensus. A probabilistic algorithm is used to ensure
that the ledger will always be consistent in some point in the future using
mathematical functions. This type of algorithm allows the appearance of
ledger divergences (also known as forks) because different nodes might have
different views of the accepted order of transactions13.

On Hyperledger Fabric, the Orderer [20] is the service component that is
responsible for ensuring that the order of the transactions is the same across
all nodes of the network. The service is run by a node in the network that
has this special role. With this type of implementation, the network achieves
higher performance without the existence of ledger forks.

There are four known implementations for the Orderer Service 14:

• Solo: Orderer service is running on a single centralized node. This
default implementation is typically used only in development scenarios.
For production, a higher availability solution must be employed.

• Raft: Crash fault tolerant based on Raft protocol15 [21]. It is easier to
implement than a Kafka implementation.

• Kafka: Similar to RAFT-based ordering but with a harder implementa-
tion and management.

• Byzantine Fault tolerant: A BFT consensus algorithm is still under work
by the Hyperledger Fabric team 16. Nevertheless, the modular architec-
ture of the platform allows the integration of custom implementations
as for instance the BFT-SMART [16]. Although more resilient, this imple-
mentation is still less performant.

With its modular architecture, any of these ordering services implementa-
tions can be plugged on the network without affecting the remaining compo-
nents configuration.

13On such scenario, the longest chain is the one that ends up being accepted by the network
14Solo and Kafka implementation have been deprecated since v2.x of Hyperledger Fabric

(https://hyperledger-fabric.readthedocs.io/en/release-2.2/orderer/ordering_ser
vice.html#ordering-service-implementations)

15https://raft.github.io/
16https://hyperledger-fabric.readthedocs.io/en/latest/Fabric-FAQ.html?#bft

10

https://hyperledger-fabric.readthedocs.io/en/release-2.2/orderer/ordering_service.html#ordering-service-implementations
https://hyperledger-fabric.readthedocs.io/en/release-2.2/orderer/ordering_service.html#ordering-service-implementations
https://hyperledger-fabric.readthedocs.io/en/latest/Fabric-FAQ.html?#bft


Ledger and World State View

Hyperledger Fabric’s ledger is a blockchain structure where all submitted
transactions are registered. To avoid the need for each node to go through the
whole chain in order to check the current state of the ledger, a database called
World State View is deployed alongside with the current state of the ledger.

This database is not immutable, being used as a simply cache system.
Therefore, it is common to have the World State View values updated fre-
quently, based on the transactions submitted to the network. On the ledger,
on the other way, each transaction is always registered as a new one, without
changing any past transaction.

For the World State View, two implementations are available: LevelDB and
CouchDB. The latter is the most common choice as it supports rich queries
improving the smart contract performance and capabilities. Each node has its
own World State View implementation along with its blockchain ledger.

Chaincode

Chaincode is the name associated to a Smart Contract implementation on
Hyperledger Fabric. Chaincode can be written in Go, Nodejs or Java. A
chaincode runs on each node with the responsibility to handle business logic
by exposing the operations available on the network.

Channels

Channel is a concept on Hyperledger Fabric that is used to represent a private
communication between a set of network nodes.

A network can have as many channels as needed, being the transactions on
a channel only visible to its members. Each channel has a specific chaincode
and the associated ledger. With this architecture each node can be a member of
several distinct channels, having, as a result, a copy of each channel’s ledger.

Certificate Authorities

In order to interact with the network a valid identity is required. Certificate
Authority (CA) is the service that typically runs on each node and is used to
generate and manage those digital identities.

Each identity consists on a digital signed certificate that was issued by this
service. A CA is responsible for operations over these certificates like issuance,
enrolment, renewal and revocation.

Software Development Kits (SDKs)

Hyperledger Fabric has two SDKs available: Nodejs and Java. It is possible
to leverage on these SDKs to further develop applications that will interact
with the blockchain network on behalf of the users. Operations could range
from channel creation and chaincode installation to invoking transactions and
querying the ledger, among others.

11



4.2 Other blockchain Platforms

In this chapter a small overview is given on two well-known blockchain
platforms: R3 Corda and Ethereum.

R3 Corda is a permissioned blockchain platform designed specifically for
the development of enterprise financial solutions. Ethereum on the other hand
is a permissionless blockchain platform. It was one of the first permissionless
blockchain platforms allowing the development of solutions on top of its
currency - Ether.

R3 Corda

Corda is an open source platform for developing DLT solutions owned by R3
[22, 23]. Just as Hyperledger Fabric, this platform allows the implementation
of permissioned ledger networks with a focus on the enterprise environment,
more specifically on financial area. On Corda the consensus mechanism is
different from the one used on Hyperledger as it only requires the acceptance
from the parts evolved on the transaction.

Although referred as a blockchain implementation, it is still not clear if
it fits the description as its implementation is quite distinct from a typical
blockchain system. For instance, transactions on Corda are validated in real
time by the entities involved, and the resulted transaction is not broadcast to
the whole network as it is shared on a need to know basis. On the other hand,
and in the same way as in a blockchain system, transactions are cryptographi-
cally chained. In this specific implementation each transaction is chained to
all transactions it depends on.

Ethereum

Ethereum is a well-known permissionless ledger network that also achieves
consensus by using Proof of Work algorithm 17. This platform implements the
Ether crypto-asset, that can be used to send payments between members of
the network [9, 23].

More than a payment system, Ethereum allows to build new solutions on
top of its blockchain technology, making it a distinct permissionless blockchain
solution when compared to bitcoin. The new business cases implemented on
Ethereum platform use the ETH crypto-asset as a payment currency. Given its
ability to support the development of new blockchain permissionless ledgers,
Ethereum was one of the main platforms used for the creation of new projects
and the appearance of Initial Coin Offers (ICO) [21].

5 Experimentation Framework

Being this the first internal experimentation performed on blockchain leaded
by Banco de Portugal, a framework was designed to validate and ensure the
achievement of the intended results. The framework was designed as a six
stage process with clear deliverables on each stage.

17Planning on implementing Proof of Stake consensus by 2020

12



Stage 1: Experimentation Goal

To achieve a more focused experimentation initiative, it is important to have
a clear vision and understanding on what the intended goal is. This creates
a focus on the team itself and limits the chances of a broader dispersion of
related activities, which can result on failing to reach conclusions.

Deliverables

1. Vision for experimentation.
2. Main achievements to be pursued.

Stage 2: Use Case

For the experimentation to have a solid start with the needed sponsorship, it
is important to identify a relevant use case. Such use case must be able to take
advantage on blockchain’s distinct characteristics.

Deliverables

1. Identification and clarification on candidate use cases.
2. Team and roles responsible for it.

Stage 3: Business Model

As in any business activity, a clear communication from the business require-
ments to the final implementation is very important. A clear vision on what
business processes have to be implemented is crucial. In collaboration with
the business team, and for each life-cycle captured from the use case, the main
states and transitions must be identified.

Deliverables

1. A machine-state diagram where the business processes are identified.

Stage 4: Chaincode Development

Development of the chaincode based on the machine-state diagram delivered
on the previous state. A chaincode operation shall be implemented for each
state transition, which represents a business process. Each state must represent
a given state of the asset on the ledger.

Deliverables

1. Chaincode for the Business processes identified.

Stage 5: Infrastructure

As in any experimentation it is important to ensure a dynamic and flexible
environment. This mindset allows the team to surpass and dynamical adapt to
new challenges that may and will occur during the experimentation. Therefore,

13



it is required to ensure that a proper infrastructure environment is available
with all the permissions and needed capabilities. On this stage it is relevant to
already have a clear idea of the experimentation goal so the environment can
be configured accordingly.

Deliverables

1. Identification, deployment and configuration of a DLT infrastructure
environment.

Stage 6: Integration

The final stage in this framework is related to the implementation of interfaces
required for integrating the resulted experimentation with BdP’s current enter-
prise ecosystem. For instance, it may imply the development of user interfaces
or integration with already existing systems.

Deliverables

1. Identification of the interfaces required for the intended integration.
2. Development of such interfaces.

6 Experimentation Goal

6.1 Goal

Explore and learn more about the distinctive characteristics of blockchain
technology when applied to a Banco de Portugal internal use case.

6.2 Vision

Allow Banco de Portugal to be able to develop, deploy and manage blockchain
platforms and solutions autonomously. Also be able to deploy scalable dis-
tributed environments for future use cases.

6.3 Proposed Achievements

• Development of a fully functional blockchain solution based on a real
use case.

• Development of interfaces to:

– Interact with the network.
– Integrate with internal Platforms – e.g.: using OutSystems to build

a web application as a front-end.
– Visualize the state of the network on real time.

• Extend the network to other NCBs.

14



7 The use case: Securities lending

This experimentation was built upon a business case with requirements that
could take advantage of blockchain’s unique capabilities such us immutability
and the distribution of the responsibility across a network.

7.1 What is Securities lending

The Eurosystem monetary policy implementation has several instruments
available, of which, relevant for this use case, are the asset purchases pro-
grammes, like APP and PEPP [24]. Under these programmes, securities are
purchased by all National Central Banks (NCBs) and by the ECB. They are
responsible for publishing the list of securities they own that are available for
lending to financial institutions.

Figure 2: Securities lending As/Is Model (simple view)

This decentralized model has some specific drawbacks:

• For instance, each NCB is free to choose the preferable format to publish
the list of securities available for lending. The nonexistence of a standard
results in a poor user experience for end users.

• There is no single point of access for the end users to search for intended
securities. Such decentralization implies that users may have to perform
several searches through different NCBs to find the required security.

• Real time updates are difficult to handle as the lists are currently being
updated on a weekly basis. That means that even if a security is available
on the list, it may already be lent to another entity.

Such drawbacks result on a pattern that the work group described as "Search
and Try", ending on a non-efficient process with a poor user experience.

For current BdP implementation of this program, some additional charac-
teristics were found:

15



• Third-parties are responsible for holding custody of BdP’s securities.
• The lending is performed by those third-parties as long as there is an

amount of securities available, interest from clients and the programs
limits were not reached.

• BdP does not take part on the negotiation or execution process of a
security lending.

• A report is sent by the third-party to BdP by the end of the next day. No
internal registration of the securities and the amounts lent is performed.

• The Market Operations team is responsible for updating the securities
list on BdP’s website weekly. Only public information is published and
therefore no amounts are visible to the generic public.

• The current model used by BdP is also used by other NCBs.

Although there might not be a real need to have all information available
in real time, as the system could still work as required updating once a day the
public information to the list, the sensitive information (like amounts) could
still be registered on the system with strict read permissions to each participant
NCB, while keeping the public information available to all remaining clients.

BdP’s believes that a unified solution could solve the majority of the cur-
rent drawbacks identified, also allowing each NCB to choose their own model
- either using an external entity to take the responsibility for managing the pro-
cess on behalf of each NCB or having each NCB to assume that responsibility
themselves.

7.2 Seclending Chain

Seclending Chain is the blockchain solution proposed by Banco de Portugal to
improve the Securities lending process.

The use case has the characteristic of having two distinct life-cycles: one
for security and other for lending. The existence of two distinct life-cycles
demands a particular attention when analysing the existing business process,
as one must take in consideration how both life-cycles interact with each other.

By addressing the security life-cycle, a single unified list is created remov-
ing the need for an end user to have to deal with different list structures and
standards for each NCB. By addressing the lending life-cycle, it is possible
to register on the ledger each transaction regarding the lending of securities,
having the list updated in real-time. It’s truly important for this use case to
succeed that requirements are addressed at the same time for both life-cycles,
so that identified drawbacks can be mitigated.

The solution proposed for Seclending Chain results on a distributed ledger
that stores all securities owned by each NCB and all the lendings performed.
In this way any end user can access each NCB securities portfolio information
with just a single query, avoiding the need to execute a query on each cen-
tralized system managed currently by each NCB. With this implementation
the responsibility for exposing and keep the list updated is shared across the
network.

16



Figure 3: Securities lending To/Be Model (simple view)

7.3 Results

Banco de Portugal successfully identified a use case that could take advantage
of the potential capabilities of blockchain technology. The use case is a typical
transactional/reference data system comprising the additional challenge of
having two distinct life-cycles.

8 Business Model

The first step consisted on exploring the use case within the team, using a
collaborative approach for analysing requirements within each life-cycle.

8.1 Security Life-cycle

A total of four different states where identified for the security life-cycle:

• Available: A security is visible on the list, and it can be lent to end users.
• Suspended: A security is kept on the system although not being avail-

able for lending. The security is only visible for the owners being re-
moved from the public list.

• Matured: When the Maturity Date is reached, the security has finished
its lifetime and thus is no longer valid to be lent.

• Unavailable: A security is unavailable. This state occurs when it has a 0
amount available for lending.

A total of six Security operations were identified:

1. Creation
2. Expiration
3. Suspension
4. Disabling

17



5. Activation
6. Lending

The Lending operation is the one responsible for linking both security and
lending life-cycles. This operation creates a lending transaction and updates
the corresponding security status.

8.2 Lending Life-cycle

A total of three different states where identified for the lending life-cycle:

• Lent: A Security is lent to some counterparty.
• Matured: The lending period has ended and the counterparty fully

fulfilled the agreed conditions.
• Default: The lending period has ended but the counterparty did not

fulfil the agreed conditions.

A total of three Lending operations were identified:

1. Return Process
2. Default Process
3. Default Regulation

When a Security Lending reaches its lending date the amount of securities lent
is returned to the security list. If still valid, the securities become available for
a new lending.

More information of the business case is available in appendix B

8.3 Results

The overall business model is represented in the machine-state diagram pre-
sented in Figure 4. On this diagram the security’s states (yellow), lending’s
states (green), security’s processes (blue) and lending’s process (purple) are
further identified.

Figure 4: Securities lending Business Model Machine State Diagram

18



Each connection between each concept represent all possible transactions
between the identified states. Each process represents an operation required
to be executed in order to guarantee the transition between states, and thus
needed to be developed and deployed on the network.

The experimentation resulted on a better understanding on both Security
and Lending life-cycle, and how they are inter-connected. It also highlighted
the need to have a broader vision on how the assets state changes, as a result
of the different business operations identified.

9 Chaincode development

The development of smart contracts, also referred as chaincode on Hyper-
ledger Fabric, started by leveraging the results gathered from the business
requirements. Smart contracts were developed using Go18 language as it was
the most commonly used language on this platform and therefore the one
with more information available on the internet. It is also the one with the
best-known performance.

The chaincode development consisted on implementing for each identified
process, a ledger operation that could be executed by any node on the network.
Each operation has taken in consideration the current and future status of the
asset - security or lending. For the development, the interface mock shim19 from
Hyperledger Fabric was used. This interface simulates a network, allowing
one to develop and test code without the need to have a network available.

9.1 Main Challenges

Elapsed Time Events

Some of the developed processes are elapsed time events regarding operations
on securities and lendings (e.g.: when security’s maturity date is reached).
The initial intention was for these operations to be executed autonomously by
the network.

From this experimentation it was verified that it is not possible to execute
natively time-based events on this blockchain distribution. Hyperledger Fabric
network architecture is designed so that any chaincode invocation needs to
start from a participant of the network, and never from the network itself.

To achieve the needed automation, it is required to have an external service
implementing a timer function that automatically invokes the required opera-
tion over the network. Being this a distributed network, concerns regarding
clock drifts across all nodes must be taken in consideration.

Atomic Transactions

When lending a security, two transactions must be registered into the ledger:
one that states the updated security state and another one to create a new lend-

18Go is an open source programming language. More in https://golang.org/
19Mock class that simulates most of the available network operations. More in https:

//godoc.org/github.com/hyperledger/fabric-chaincode-go/shimtest/mock

19

https://godoc.org/github.com/hyperledger/fabric-chaincode-go/shimtest/mock
https://godoc.org/github.com/hyperledger/fabric-chaincode-go/shimtest/mock


ing state confirming that the lending was indeed validated. These transactions
must be atomic and linked together, as one cannot occur without the other.

This challenge was not fully addressed during the experimentation, as a
significant effort was perceived to analyse and decide on the best solution.

Authentication and Authorization

Some business operations must only be available to some participants of the
network. To achieve such segregation, chaincode invocations must take in
consideration the user’s own identity and associated properties.

On Hyperledger Fabric, the identity of the user is based on digital certifi-
cates. The digital certificate comprises a set of customized properties which
can be used for further authorization purposes.

For this experimentation a set of groups were created regarding the typol-
ogy of the identity (e.g.: owner) and the identity’s identification (e.g.: BdP).
Using this combination, it is possible to enforce rules to ensure that only
owners were allowed to create securities and that each owner is only able to
manage its own securities. The end user authentication is always ensured by
using certificate validation.

9.2 Results

At this stage each business transaction was transformed into a chaincode
operation. Both life-cycles could be executed by now, but still requiring an
integration layer to further expose each functionality to end users.

As for the capabilities delivered by the platform, a better understanding
on how authorization can be applied into the chaincode implementation was
achieved, using certificates and metadata. It was also possible to verify that
the use of timers is not a native capability designed on Hyperledger fabric.

Future work must also address questions regarding the atomicity of trans-
actions as it is a far more complex challenge required by systems that involve
the interoperability of assets with different life-cycles.

10 Setting up the BdP DLT Infrastructure

To further explore blockchain technology, BdP decided to implement its own
DLT environment. This decision resulted from the desire to acquire knowledge
on how to create, configure and manage such kind of distributed environment.

In this chapter a description of the technology and network topology
implemented is given. Additional details such us software and additional
configurations are available in appendix A.

10.1 Technology and Infrastructure

BdP leveraged on its Azure Cloud environment to create such a distributed
environment. The decision behind choosing the cloud as the operating model

20



to host this experimentation was the need to have an experimental environ-
ment with easier access from and to the internet20, and thus be able to accept
a certain level of exposure.

The configured DLT environment consists of four individual IaaS21 Ubuntu
18.04 LTS servers: one is configured as a sandbox used to develop and deploy
services, and the remaining ones are used to configure all nodes that take
part on the network. Even though it is possible to deploy all network nodes
on a single server, independent servers were instantiated so that the final
deployment could be as closest as possible to a real-life scenario, reducing the
gap for future collaborations and needs.

10.2 Network topology

The network topology consists on a single Orderer with two single peer
Organisations (PT and EU).

Each peer also hosts a Certificate Authority (CA) and a World State View.
With a dedicated CA, each peer can generate and validate their own identities.
For the World State View, a CouchDB Database implementation was chosen,
allowing each peer to execute more elaborated and advanced queries, adding
an extra level of agility to the process.

Figure 5: Banco de Portugal DLT Network (simple view)

10.3 Starting a Network

Starting an Hyperledger Fabric network can be briefly described in three steps:

1. Generate and distribute relevant artefacts.
2. Ensure connectivity and start the network.
3. Create a channel and install the chaincode.

Generate and Distribute Relevant Artefacts

In this step, the required artefacts for deploying a distributed network on
Hyperledger Fabric platform are generated using the respective binaries.

20Internet connectivity was identified as a requirement for future integrations with external
partners

21Infrastructure as a Service

21



During this process, it is required to already have a pre-defined network
topology which will be the base for the artefact generation. The Artefacts
include files like the docker-compose.yaml configuration files, root certificates
for each Organisations’ peers and the genesis block.

The artefacts generation is usually performed on a single server and then
the resulted files are distributed among all participants. The distribution
process is not restricted which means any channel can be used. The use of
email, shared drives or a dynamic FTP server are some possibilities.

Ensure Connectivity and Start the Network

With the assets generated and distributed, each participant will be able to
start its service. A core component on any Hyperledger Fabric Network is
the Orderer service which is usually the first one to be deploy. The service
runs on docker and it can be started by leveraging on the generated docker
configuration file. The same is true for each Organisation peer.

During this process it is required to have connectivity between all network
services. For that it is required not only to have access to the configured and
exposed network addresses (IPs and Ports), but also to have the certificates
from all services.

It is during this process that additional components, such as Certificate
Authorities and CouchDB databases, are also deployed.

Creating a Channel and Install Chaincode

Assuming all connectivity issues are resolved and the services are up and
running, the final step consists on creating a channel between peers and deploy
a chaincode on it.

For that, again, the binaries from Hyperledger Fabric are required. The
process of creating a channel must be executed by a single peer. After its
creation, the same peer can join the channel, install, and instantiate a chain-
code22. By the end of this process, the network has a channel available with a
chaincode running. A ledger is associated to this channel with already two
transactions created: one for the network configuration with all Organisations’
peers and its metadata, and another stating the information of the peer that
that successfully joined the channel. From this moment, any Organisation
can join this channel and install the respective chaincode locally. After this
process, any chaincode invocation will trigger the ledger update, replicating it
to this new peer.

For new Organisations to be able to have access to the channel, the already
running network must first update the configuration block by adding this new
Organisation information to it23.

22Install a chaincode is a process done locally while instantiate consists on deploying the
chaincode on the channel

23More information is available in section ’12.2 Extending the Network’

22



10.4 Results

A complete environment for developing and deploying blockchain solutions
was successfully configured. The environment was ready for deploying a two
single peer Organisations network with a single Orderer.

Further work should be developed in order to achieve a more comprehen-
sive solution for logging events of the environment as a whole, instead of using
the native decentralized logging model currently implemented. Also, addi-
tional work is required to define the best model for distributing the generated
artefacts among the participants of the network.

11 Integration

In this stage the goal was to explore better interoperability scenarios between
business users and the blockchain solution developed. For that it was decided
to implement three distinct types of interfaces:

• A Command Line Interface (CLI) to interact with the network through
the available SDK.

• A REST API interface to abstract the platform operations allowing the
integration with other applications components.

• A Web Interface to interact with the platform through the previously
implemented REST API interface.

11.1 CLI and REST Interface

Both CLI and REST API interfaces were developed leveraging on the SDK for
NodeJs24 available in Hyperledger Fabric. This specific SDK was chosen for
being the most commonly used by Hyperledger community.

For the development of both interfaces a two-layer architecture was devel-
oped comprising an abstraction layer that exposes some SDK endpoints. As a
result the development of each interface was focused on the interface layer
exclusively. For the REST API the SWAGGER specification was used for better
integration capabilities.

The process of authentication was also abstracted trough the developed
abstraction layer. In this layer the user identity is validated through a specific
Certificate Authority of a given peer and, if valid, the user is allowed to execute
the interfaces.

For the REST API, as it is rarely used as a user interface, a local reposi-
tory was setup to configure local identities where the user also needed to be
registered. In order to ensure an end to end authentication flow, the local
identity username needed to match the username’s identity registered on the
Certificate Authority. This model gives a certain level of confidence that the
identity authenticated to the REST API is the same executing each operation
on the network. Otherwise, there is a risk of having identity impersonation
when executing chaincode on the network. Nevertheless, additional work is

24https://hyperledger.github.io/fabric-sdk-node/release-1.4/index.html

23

https://hyperledger.github.io/fabric-sdk-node/release-1.4/index.html


required to study the possibility of using the end user identity through the
whole pipeline.

On this setup each interface instance is coupled with a single peer. Further
work needs to be done in order to understand how to create a more resilient
connection between interfaces and the network.

11.2 Web Interface

The web interface was implemented, leveraging on the capabilities of a low
code platform for faster development and iterative deployments – OutSystems
– and also the developed REST API. This approach followed the initial goal to
integrate the blockchain platform with the current BdP’s enterprise ecosystem
and technology stack.

11.3 Hyperledger Explorer

Hyperledger has an explorer solution available called Hyperledger Explorer.
Based on APIs natively available in an Hyperledger Fabric network, this
solution exposes a dashboard with information from network components,
ledger status, blocks’ statistics and its content, among other functionalities.
The whole solution is built on NodeJs and requires a direct connection to a
network peer, being the information exposed the one the peer has access to.

Monitoring the network is also a very relevant requirement for knowledge
improving as it allows to learn the networks own behaviour by visualizing
each update in real time.

11.4 Results

Three integration components were developed: a CLI, a REST API and a Web
interface, allowing the evaluation of interoperability scenarios within BdP’s
enterprise ecosystem. A native network explorer service was also configured,
delivering valuable insights on the network state.

During the implementation of those interfaces, concerns regarding user
authentication and authorization were analysed. For that, Bank of Portugal
came with a solution where the user identity consuming the interface and the
identity invoking the chaincode are mapped through the same username.

Future work might be required to analyse the use of other authentication
and authorization models, aligned with the more advanced patterns for Iden-
tity and Access Management - like OAuth or SAML. It is also relevant to
consider the need and the feasibility of using a single identity through the
whole pipeline. The goal is to better understand on how to avoid imperson-
ation on chaincode invocations through malicious interfaces.

Currently, each developed interface is coupled to a single node, and the
respective CA. Further work is also required to create a more resilient sce-
nario. For instance, an interface could have a connection to several peers from
different Organisations.

24



12 Extending the Network

Following the internal experimentation conducted by BdP in creating and
deploying a DLT network with a relevant use case, other NCBs from the ESCB
community were challenged to further extend the developed use case.

The De Netherlands Bank (DNB) and the Oesterreichische Nationalbank
(OeNB) responded positively to this call to action which resulted in the be-
ginning of a joint experimentation. This collaborative work was designed
for two iterations: the first focused on starting a network with predefined
Organisations and the second on extending the network with new ones.

12.1 Start a DLT Network

Goal

This iteration’s goal was to deploy the Seclending Chain chaincode on a DLT
network composed by single peer Organisations from both DNB and BdP.

Architecture

Both Banco de Portugal and De Nederlandsche Bank leveraged on using
Azure Cloud IaaS services to set up their network nodes, supported by the
Ubuntu operating system. All nodes had the same DLT capabilities, delivered
through the use of Docker images.

The network is composed by three single peer Organisations (PT, EU and
NL) with a single Orderer. The Orderer, PT and EU peers are hosted by BdP,
being the NL peer hosted by DNB. The network’s topology is identical to the
one used by BdP on its internal experimentation but now with one additional
Organisation hosted by DNB.

Figure 6: DLT Joint Experimentation Architecture

Improvements from previous Work

Previous scripts developed initially by Central Bank of Portugal were im-
proved during this joint experimentation. The process of starting the network
was performed successfully within a very reasonable effort and time frame25.
The following tasks were addressed:

25A total effort of approximately 12 hours of joint work

25



• Ensure Connectivity between nodes.

– Setup Orderer and nodes from BdP and DNB.
– Create a Channel and join it.

• Setup the Securities lending use case:

– Install and Instantiate the Seclending Chain Chaincode.
– Deploy and configure the interfaces (CLI, REST API and Hyper-

ledger Explorer).

• Test the network by creating both BdP and DNB Securities.

The most significant effort in this step was related to network and interface
configuration. As it was decided to perform the configuration manually, it
was common to end up with some configuration mismatched. Automating the
configuration process reduced significantly the effort. By the end, a successful
setup of a running network with three single peer Organisations (two from
BdP and one from DNB) was achieved. Interaction with the network was also
possible using the available interfaces.

12.2 Extend a running Network with new Organisations

Goal

The Goal of the second iteration was to extend the running network from
the previous iteration with new Organisations, avoiding the need to start the
network from scratch.

Architecture

The second iteration of this joint experimentation was conducted in closed
collaboration between BdP, DNB and OeNB. The network architecture was
an extension of the one used on the first iteration, but now onboarding a new
NCB Organisation - Central Bank of Austria.

Figure 7: DLT Joint Experimentation Architecture (BdP, DNB and OeNB)

26



Central Bank of Austria decided to host the node representing this new Or-
ganisation on its own internal infrastructure and chose the Red Hat operating
system to run the node.

The network topology chosen for this second iteration was composed by
five single peer Organisations (PT, EU, NL, DE and AT): two hosted by BdP,
two hosted by DNB and one hosted by OeNB. The network counted also with
a solo Orderer service, hosted by BdP. It was decided to start the network with
each NCB hosting a single Organisation - three nodes - and later extend it with
additional Organisations from BdP and DNB. The diagram of the architecture
is available in Figure 7.

Improvements on previous Work

On Hyperledger Fabric, the network composition is defined on the ledger
itself, as a transaction that states which Organisations belong to the network,
their peers and the corresponding metadata.

The process of adding a new Organisation to the network requires the
retrieval, extraction and update of this configuration block by adding this
new Organisation’s information to the ledger. After updating the block, it is
required to create and submit a request for a new transaction to the network.
For the submission to be successful, the submitting node must gather the
required amount of signatures26 from the remaining network’s nodes in order
to fulfil the network’s consensus policy. If consensus is achieved, the block
is accepted and added to the ledger as a new configuration of the network.
From this point, the new Organisation is now considered part of the network.

Figure 8: Process of updating the configuration block with a new Organisation.
Image from Medium [25]

After being configured on the ledger, with the configuration block updated,
the new Organisation needs to join the already existing channel and install
the corresponding chaincode. In order to be able to endorse transactions

26The default policy is majority

27



on that channel, a chaincode upgrade needs to be performed. The upgrade
allows to update the endorsement policy including the new Organisation as
an endorsement peer. The chaincode upgrade must be performed by one of
the existing Organisations as the new one does not have permission to execute
such an operation.

The process of extracting and updating the block is an error prone proce-
dure, requiring several sequential transformations manually applied (check
figure 8). For that, BdP decided to improve and extend the automated scripts
in order to reduce the effort required to extend the network. The updated
version of these automated scripts, resulted in a faster deployment of the net-
work by significantly decreasing the required amount of manual interventions
during the network and interface configuration.

Initially the network was composed by three distinct Organisations (PT,
NL and AT). For the first extended Organisation (EU, hosted by BdP) it was
required to have a signature from two of the three Organisations. After adding
this new Organisation to the network, and for the next Organisation (DE,
hosted by DNB) to be accepted, three signatures were required, as now the
network is composed by four distinct Organisations (PT, NL, AT and EU).
Again, it is important to state that the policy for updating the network with a
new Organisation is completely different from the endorsement policy, which
is associated to a chaincode version on a given channel.

12.3 Results

At the end of the two iterations a successful deploy of the Securities lending use
case was achieved in a distributed network composed by three different NCBs.
Additionally, it was possible to validate and further automate the process of
extending the network to new Organisations, confirming the possibility of
such requirement.

Knowledge on how consensus works for network updates was also ac-
quired. Although not verified, the same procedure may be applied to remove
an Organisation from the network by removing its associated configuration
from the network’s configuration block.

The time and effort spent in both iterations revealed that automating
the process, in an incremental way, works also as a learning process27. The
progressive evolution on automating the scripts clearly decreased the time
required to start and further extend a running network, when comparing with
values gathered from the initial setup.

13 Takeaways

The deployed DLT network evolved from an internal experimentation by
Banco de Portugal to a more collaborative joint experimentation with both
DNB and OeNB. From this joint experimentation it was possible to learn on

27The whole iteration took around 8 hours of joint effort for both starting a network, and
extending it with two new Organisations. These values do not take in consideration the effort
required for the initially configuration of the nodes

28



how to develop, deploy, manage and extend a DLT network developed on
Hyperledger Fabric platform.

The design of a framework to be used for this experimentation played an
important role in achieving the purposed goals. Techniques like the creation
of a state-machine diagram highlighted the importance to address the require-
ments of both life-cycles at the same time. This was a crucial step forward
because it allowed to translate business requirements into a more transparent,
easy and understandable approach.

Producing the documentation for the executed procedures was also seen
as a really important deliverable. Such documentation was the main tool used
to share the work done in collaboration with both DNB and OeNB.

The process of creating and starting an Hyperledger Fabric distributed
network may seem overwhelming due to the great amount of different config-
urations and distinct steps required between the Organisations involved.

The best place to start is with Hyperledger tutorial "Build First Network"28.
Using this tutorial, it’s feasible to start a simple network, with multiple nodes
on a local machine, from scratch. It is then easier to leverage on the acquired
knowledge to use the same approach and reproduce the same results on a
more complex network deployed across distinct servers.

When moving from a single local-machine environment to a multi-server
configuration environment, the complexity of managing and deploying the
network increases. Such complexity involves challenges with connectivity, as
there is the need to ensure that all nodes are able to communicate and share
the generated assets.

From the second iteration of the joint experiment, extending the network
to new Organisations become no longer an unknown field. The process
tested, although not as straight as starting the network, is simple enough to
understand and execute.

For the joint experiment, the time and effort required to start and extending
the network, ensuring connectivity and finishing script automation, is a good
indicator that the created process is easy to replicate for further Organisations
and may be extendable to other use cases. This was only possible because the
decision to automate the whole process, in an incremental way, also worked
as a learning process, thus reducing the need for manual intervention and
resulting on less configuration errors.

The development of smart-contracts using Hyperledger Fabric platform
revealed to be quite straightforward. Despite the lack of experience using the
Go programming language, there is plenty of information available on the
internet that can be used as a guide trough the development process, including
Hyperledger own code samples. The existence of a mock-up interface of the
network - mock shim - was also helpful for a faster development.

During the chaincode development some challenges remained unad-
dressed:

1. How to achieve an atomic transaction when two ledger updates are
required.

28https://hyperledger-fabric.readthedocs.io/en/release-1.4/build_net
work.html

29

https://hyperledger-fabric.readthedocs.io/en/release-1.4/build_network.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/build_network.html


2. How to ensure end-to-end authentication and authorization of an entity
when using that identity to invoke smart contract operations.

In this experimentation the authentication and authorization process were
somehow approached by leveraging identities with digital certificates and
metadata. The solution has still space for improvements and could be further
aligned with modern authentication frameworks and protocols 29.

One important limitation identified was the lack of native support for
time-based events, as all transactions must start from a node to be accepted by
the network. For the Seclending use case this was an important requirement,
as the use case was initially designed to take advantage of concepts around
event-driven architectures, aligned with the need to analyse, at the same time,
both Securities and Lending life-cycles.

Nevertheless, operations involving time on distributed systems are always
an implementation challenge as small time deviations between different nodes
on the network may occur, ending up in discarding valid transactions.

The integration of the blockchain solution with the external environment
turned out to be fairly easy. This was due to the availability of an SDK with
the required API endpoints that allowed a successful interaction with the
network. The decision to use a two-layered architecture model, and reusing
the implemented abstraction, resulted in a faster development, as both the
CLI and REST API interfaces integrate seamlessly with the network.

The integration of the Web interface with the network didn’t present a
challenge as it was a typical web integration process by leveraging on the
developed REST API. The use of the SWAGGER framework also enabled the
automatic import of all available endpoints, allowing the web application to
reuse all contract’s definition.

One drawback identified was the exclusive connection between the in-
terfaces to a single peer on the network. For a pure distributed system such
implementation seemed very limited.

The deployment of a network visualizer - Hyperledger Explorer - had also
some initial challenges to get the correct configuration working. After setting
up the desired configuration, the solution delivers what it promises, although
a more real time approach would be an important improvement.

One of the most relevant characteristics of blockchain is immutability. In
Hyperledger, such property is only intrinsic to the ledger, as the World State
View used can be easily tampered by the owner of the hosting server.

Nevertheless, tampering the World State does not have any direct impact
on the network itself, as this system of records is used to guaranty a faster
access to the ledger state (both from user interfaces and smart contract execu-
tion). Such tampering does not affect the network’s results as the operations
in the end are always validated trough the information available on the ledger.
Nevertheless, further work must be done in order to perform a broader anal-
ysis on the real impacts of tampering the World State View and also on the
possibility of a single node to tamper its own ledger, and the implications on
the network.

29E.g.: OAuth 2.0, SAML 2.0 and OpenID Connect

30



14 Next Steps

Following the learnings from the experiment, further exploration must be
addressed on the following topics:

• Consensus:

– System behaviour with different endorsement policies.
– Orderer Role in consensus implementation.

• Privacy and Confidentiality

– Usage of sensitive information.
– Information encryption and signature with the owner’s own key.

• Authentication and Authorization:

– Modern Identity and Access Management paradigms.
– Use of the user’s identity through the whole pipeline of a request,

including chaincode’s execution.

• Scalability, Performance and Resiliency of the Network:

– Network behaviour under heavy load.
– Tampering the World State View and the Ledger on a single node.

• Automation and scripts improvement.

Some of these topics were briefly addressed on this experimentation but
additional work is required to better understand these novel technology capa-
bilities and its limitations.

15 Blockchain: The Good the Bad and the Ugly

Blockchain, although not being a completely new technology, has recently
raised a clear interest on different activity sectors and business models. It
begun in the payments domain with bitcoin but it is scaling to other domains
such us health, retail tracking or even games.

The fact that blockchain started so famously created a huge hype around it,
creating the idea that this technology has the power to solve every single prob-
lem on every enterprise. Such interest resulted on high waves of investment
to explore this novel technology in searching for the next big thing.

This rapid growth created high expectations that end up not being totally
fulfilled. Blockchain, as any technology, it is not suitable for any use case.

There is still space for blockchain to be relevant and bring innovation
to use cases. More than just a hype, it has real benefits and the potential
to improve the way information is managed, removing the control from
centralized entities to purely distributed networks. But again, the use case
must be carefully chosen as blockchain is not a one size fits all technology.

For the years to come, new applications involving new use cases will
emerge, potentially disrupting some business models. The need to have
advertise the use of blockchain technology will fade away and users will start
using applications supported by this technology without knowing it.

31



It is also believed that blockchain has the capability of changing the internet
as we know it. We may see a move of having our information on secure
communications (HTTPS), to being secure and distributed (e.g.: HTTPB),
indicating that the information being accessed, at the end, is totally controlled
by the end user, leveraging on Blockchain as the single source of truth and
trust.

32



16 Acknowledgments

Special thanks are due to the Central Bank of Netherlands and the Central Bank
of Austria for accepting the challenge and the call to action. The constant flow
of motivation, the sharing of experiences and their knowledge demonstrated
by practicing on the field have made the final joint experiment a real success,
contributing significantly to our initial goals and expected outcomes.

33



Appendices

Appendix A BdP DLT Infrastructure

A.1 Software and Configuration

Sandbox server

• Ubuntu 18.04 Lts
• Hyperledger fabric1.3 binaries
• Golang 1.3
• Nodejs 8.5
• JQ

Additionally, and in order to be able to have access to a browser interface,
a GUI30 package was installed on the sandbox server. this allowed to have
access to application with graphical interfaces such as the developed Rest API
and the Hyperledger Explorer.

Network nodes

• Ubuntu 18.04 Lts
• Hyperledger fabric 1.3 binaries
• Docker and the following docker images

– Orderer
– chaincode
– couchdb
– peer
– Certificate Authority

A.2 Logging and Debugging

As the whole network components run on top of Docker containers, the
logging systems is also based on this technology. Each container has a log file
which can easily be accessible through the command ’docker logs {container-id}’
and contains the whole logging messages.

Appendix B Business Exploration

B.1 Entities

The following entities take part on Securities lending Business process:

• Owner: Entity who owns the security and has the responsibility to list it
and lend it to their end-users.

• Lender Player: The entity responsible for process the lending of a given
security. In some cases, the lending process is done by the owner which
has in such situations the role of lender player.

30Graphical User Interface

34



• Counterparty: The entity that borrows the security.
• Regulator: The entity responsible for the regulation of the system.
• Negotiator: The entity responsible for negotiating the terms of a trans-

action. The role is typically the same as the Lender Player.

B.2 Security Properties

• ISIN
• Status (Available, Suspended, Matured, unavailable)
• Amount
• Owner
• Lender Player
• Negotiator
• Interest Rate
• Maturity Date

B.3 Lending Properties

• Transaction ID
• ISIN
• Owner
• State (Lent, Matured, Default)
• Counterparty
• Lender Player
• Negotiator
• Collateral
• Amount
• Fee
• Interest Rate
• Settlement Date
• Maturity Date

Appendix C Scripting and Automation

C.1 Scripting and Automation

The process of configuring the network can be costly and very error prone as it
evolves considerable configuration files and requires the execution of several
sequential steps.

In order to reduce the error rate and thus improve the velocity from where
one can start and extend a network from scratch, Banco de Portugal developed
automation scripts which abstracts the whole process of setting up the network.
By creating the automatic process it is also guaranteed the correct reproduction
of results.

The automation process includes:

• Single Configuration file with the whole network configuration for both
peer and Organisations

• Generating network artefacts such as:

35



– Cryptographic assets for all nodes
– Docker compose files for containers based on pre-defined templates
– Configuration files for all interfaces
– Configuration files for new Organisations (network extension)

• Start up docker components
• Create and join channels
• Install and instantiate Chaincode
• Create and manage identities within a CA
• Extend the network to new Organisations

At the moment, without taking in consideration the time required to ensure
connectivity among all nodes, it was possible to start a network from scratch
in less than an hour including starting up the developed interfaces.

At the moment the bottleneck of the whole process consists on the distri-
bution of the generated assets. This process still requires a considerable effort
as it remains manual, performed in a not very agile way.

36



Acronyms

API Application Programming Interface.

BdP Banco de Portugal.
BFT Byzantine Fault Tolerance.

CA Certificate Authority.
CLI Command Line Interface.
CRUD Create, Read, Update and Delete.

DLT Distributed Ledger Technology.
DNB De Nederlandsche Bank.

ECB European Central Bank.

FTP File Transfer Protocol.

HLF Hyperledger Fabric.

ICO Initial Coin Offer.

NCB National Central Bank.

OeNB Oesterreichische Nationalbank.

SAML Security Assertion Markup Language.
SDK Software Development Kit.

Glossary

51% Attack When an entity or group controls more than half of the computing
power of a crypto-asset, and thus, have higher probability to control the
next block to be registered on the network.

API An application programming interface that exposes a set of services for
others to consume.

Bitcoin Crypto-asset proposed by Satoshi Nakamoto on 2008.
Blockchain DLT implementation where the ledger is composed of chains of

block of data, cryptographically connected and distributed across peers.

Certificate Authority Entity responsible for managing and issuing digital
certificates.

Consensus Algorithm by which the distributed network agrees which block
should be added next.

Corda Open source blockchain platform focused on financial enterprise solu-
tions.

crypto-asset Digital asset based on cryptography, design to be used as a
medium of exchange.

37



Digital Signature A cryptographic operation where a digital code is gener-
ated using a digital certificate, ensuring the identity of the user and the
integrity of the message.

Distributed Ledger Technology Technology where the database, also known
as ledger, is shared across several entities, each one with its own copy.

Double Spending When an entity uses the same digital asset on two distinct
transactions.

Ether Crypto-asset associated to the Ethereum platform.
Ethereum Open source blockchain platform where it is possible to implement

smart contracts for Distributed Applications (DApps). It is also a known
crypto-asset along with bitcoin.

Fintech Computer programs and technologies used to support banking and
financial services.

Genesis Block Initial block on a Blockchain network.

Hash Cryptographic function that transforms any given type of information,
no matter its size, into a fixed length unique identifier.

Hyperledger Multi-project open source collaborative effort hosted by the
Linux Foundation.

Hyperledger Fabrics Specific project from Hyperledger which offers a modu-
lar platform for the development of blockchain applications.

Ledger Digital system of records of a DLT network.

Mining The process of adding a new transaction to the ledger on Bitcoin’s by
solving a computational demanding challenges (PoW).

Node Single point on the network associated to an entity or Organisation.

Organisation Abstraction used to identify the entities that are part of the
network.

OutSystems A Portuguese platform for low code applications development.

Peer Instance of nodes for the same organisation.
Permissioned Network Networks where only authenticated identities can

take part of the network.
Permissionless Network Networks where any identity can be part of the

network and thus submit and validate transactions.
Proof of Stake Mechanism alternative to the Proof of Work where instead of

computer power a stake is used.
Proof of Work Mechanism implemented on certain blockchain networks as a

security measure where each transaction must require a certain amount
of work.

Smart Contracts Digital piece of code that implements the business rules by
which the DLT network should run.

Token A digital representation of an asset which can be transact on a
blockchain Network.

38



References

1. Andrea Pinna and Wiebe Ruttenberg. Distributed ledger technologies in
securities post-trading. ECB Occasional Paper, (172), 2016.

2. Svein Ølnes, Jolien Ubacht, and Marijn Janssen. Blockchain in government:
Benefits and implications of distributed ledger technology for information
sharing, 2017.

3. Peter Thiel. Blockchain 3.0 the future of dlt? https://cryptoresearch.r
eport/crypto-research/blockchain-3-0-future-dlt/.

4. M Frans Kaashoek and David R Karger. Koorde: A simple degree-optimal
distributed hash table. In International Workshop on Peer-to-Peer Systems,
pages 98–107. Springer, 2003.

5. M Divya and Nagaveni B Biradar. Iota-next generation block chain. In-
ternational Journal Of Engineering And Computer Science, 7(04):23823–23826,
2018.

6. Zhe Yang, Kan Yang, Lei Lei, Kan Zheng, and Victor CM Leung.
Blockchain-based decentralized trust management in vehicular networks.
IEEE Internet of Things Journal, 6(2):1495–1505, 2018.

7. Nitish Singh. Blockchain vs database: Understanding the difference be-
tween the two. https://101blockchains.com/blockchain-vs-databas
e-the-difference/.

8. Arati Baliga. Understanding blockchain consensus models. In Persistent.
2017.

9. Gavin Wood et al. Ethereum: A secure decentralised generalised transac-
tion ledger. Ethereum project yellow paper, 151(2014):1–32, 2014.

10. Kari Korpela, Jukka Hallikas, and Tomi Dahlberg. Digital supply chain
transformation toward blockchain integration. In proceedings of the 50th
Hawaii international conference on system sciences, 2017.

11. JP Morgan. Jp morgan creates digital coin for payments, 2019.

12. Eurochain. Exploring anonymity in central bank digital currencies. Euro-
pean Central Bank - IN FOCUS, 4, 2019.

13. Ori Jacobovitz. Blockchain for identity management. The Lynne and
William Frankel Center for Computer Science Department of Computer Science.
Ben-Gurion University, Beer Sheva Google Scholar, 1:9, 2016.

14. Satoshi Nakamoto et al. Bitcoin: A peer-to-peer electronic cash system.
asdas, 2008.

15. Fahad Saleh. Blockchain without waste: Proof-of-stake. Available at SSRN
3183935, 2019.

39

https://cryptoresearch.report/crypto-research/blockchain-3-0-future-dlt/
https://cryptoresearch.report/crypto-research/blockchain-3-0-future-dlt/
https://101blockchains.com/blockchain-vs-database-the-difference/
https://101blockchains.com/blockchain-vs-database-the-difference/


16. Joao Sousa, Alysson Bessani, and Marko Vukolic. A byzantine fault-
tolerant ordering service for the hyperledger fabric blockchain platform.
In 2018 48th annual IEEE/IFIP international conference on dependable systems
and networks (DSN), pages 51–58. IEEE, 2018.

17. Wouter Penard and Tim van Werkhoven. On the secure hash algorithm
family. Cryptography in Context, pages 1–18, 2008.

18. Christian Cachin. Architecture of the hyperledger blockchain fabric. In
Workshop on distributed cryptocurrencies and consensus ledgers, volume 310,
page 4, 2016.

19. Hyperledger Fabric. A blockchain platform for the enterprise - hyper-
ledger fabric - key concepts. https://hyperledger-fabric.readthedo
cs.io/en/release-1.4/index.html.

20. Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Kon-
stantinos Christidis, Angelo De Caro, David Enyeart, Christopher Ferris,
Gennady Laventman, Yacov Manevich, et al. Hyperledger fabric: a dis-
tributed operating system for permissioned blockchains. In Proceedings of
the Thirteenth EuroSys Conference, page 30. ACM, 2018.

21. Diego Ongaro and John Ousterhout. In search of an understandable
consensus algorithm (extended version), 2013.

22. Richard Gendal Brown, James Carlyle, Ian Grigg, and Mike Hearn. Corda:
an introduction. R3 CEV, August, 1:15, 2016.

23. Martin Valenta and Philipp Sandner. Comparison of ethereum, hyper-
ledger fabric and corda. [ebook] Frankfurt School, Blockchain Center, 2017.

24. European Central Bank. Securities lending of holdings under the asset
purchase programme (app). https://www.ecb.europa.eu/mopo/impleme
nt/omt/lending/html/index.en.html.

25. KC Tam. Add a new organization on existing hyperledger fabric network.
https://medium.com/@kctheservant/add-a-new-organization-on-ex
isting-hyperledger-fabric-network-2c9e303955b2.

40

https://hyperledger-fabric.readthedocs.io/en/release-1.4/index.html 
https://hyperledger-fabric.readthedocs.io/en/release-1.4/index.html 
https://www.ecb.europa.eu/mopo/implement/omt/lending/html/index.en.html 
https://www.ecb.europa.eu/mopo/implement/omt/lending/html/index.en.html 
https://medium.com/@kctheservant/add-a-new-organization-on-existing-hyperledger-fabric-network-2c9e303955b2 
https://medium.com/@kctheservant/add-a-new-organization-on-existing-hyperledger-fabric-network-2c9e303955b2 

	Introduction
	Distributed Ledger Technology (DLT)
	Blockchain vs DLT
	The value of trust
	Blockchain vs Database

	Demystifying Blockchain Concepts
	Permissioned vs Permissionless Blockchain
	Network, Nodes, Organisations and Peers
	Ledger
	Smart contracts
	Consensus
	Cryptography
	Double Spending and the 51% attack

	Blockchain Platforms
	Hyperledger Fabric
	Other blockchain Platforms

	Experimentation Framework
	Experimentation Goal
	Goal
	Vision
	Proposed Achievements

	The use case: Securities lending
	What is Securities lending
	Seclending Chain
	Results

	Business Model
	Security Life-cycle
	Lending Life-cycle
	Results

	Chaincode development
	Main Challenges
	Results

	Setting up the BdP DLT Infrastructure
	Technology and Infrastructure
	Network topology
	Starting a Network
	Results

	Integration
	CLI and REST Interface
	Web Interface
	Hyperledger Explorer
	Results

	Extending the Network
	Start a DLT Network
	Extend a running Network with new Organisations
	Results

	Takeaways
	Next Steps
	Blockchain: The Good the Bad and the Ugly
	Acknowledgments
	Appendices
	Appendix BdP DLT Infrastructure
	Software and Configuration
	Logging and Debugging

	Appendix Business Exploration
	Entities
	Security Properties
	Lending Properties

	Appendix Scripting and Automation
	Scripting and Automation


