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ABSTRACT 

We introduce a new Economic Distress Index (EDI), which 
incorporates information from all economic sectors as a device for 
real-time monitoring of financial stability risks in the euro area. Our 
approach is based on structural models of credit risk and 
incorporates market and balance sheet information from which we 
derive distance-to-defaults as uniform risk indicators across 
economic sectors, which form the basis of the EDI. Monetary 
financial institutions are the largest contributors to the EDI over the 
period from 1999 to 2023. In the post-Global Financial Crisis period, 
non-bank financial intermediaries emerge as the largest 
contributors to the EDI, consistent with broader developments that 
have contributed to the growth of non-bank financial 
intermediation. Using local projections, we show that the EDI also 
has significant predictive power for macroeconomic developments 
that originate primarily from high-stress regimes. Finally, we 
unpack that volatility is clearly the most important driver of the raw 
risk indicators, accounting on average for almost 80% of the 
explained variation. 
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1 Introduction

The landscape of the financial system is characterized by complexity and interconnectedness. Histori-
cally, however, the analysis of systemic risks has largely focused on the financial sector—especially the
banking sector. Following the Global Financial Crisis (GFC) of 2007-08, the prevailing view among poli-
cymakers was that the architecture of the financial system plays a pivotal role in shaping systemic risks.
Previous literature has emphasized the importance of linkages between different firms and sectors,
which can propagate microeconomic shocks throughout the economy and lead to aggregate fluctua-
tions (Gabaix 2011; Acemoglu et al. 2012). This view was often recognized as the main explanation for
the propagation of risks through the financial system, leading to the implementation of numerous policy
actions (Acemoglu, Ozdaglar, and Tahbaz-Salehi 2015; Farboodi 2023).1 In addition, regulatory reforms,
technological innovation, and the urge to bolster capital market activity in the post-GFC period have
contributed to the growth in financial intermediation beyond the conventional banking system perime-
ter (Acharya, Cetorelli, and Tuckman 2024; European Banking Authority 2024). These developments
further reinforce the necessity for a more holistic approach to systemic risk.

In an effort to adopt a more holistic approach to systemic risk and real-time monitoring of the state
of the economy, we introduce a new Economic Distress Index (EDI) that incorporates information from
all sectors of the economy; including the real economy (i.e., households and non-financial corporations),
the public sector (i.e., general government and central banks), and the financial sector (i.e., monetary
financial institutions, insurance corporations, pension funds, non-moneymarket investment funds, and
other financial intermediaries), in the euro area over a quarter of a century. The EDI is constructed
from raw stress indicators based on structural models of credit risk; from this we derive the distance-to-
default (DD), which indicates the number of standard deviations by which the market value of assets is
away from the default barrier and therefore provides a uniform and easily comparable measure across
economic sectors. The index incorporates sector-specific and recursively estimated time-varying sys-
temic risk weights that capture the interdependence between the raw stress indicators across sectors.
We document three key insights:

(I) The newly constructed EDI is a real-time monitoring device for the state of the economy that has
closely tracked past periods of systemic stress. The EDI is significantly elevated or downward sloping
near key events and peaked in late 2008 and early 2009 in the wake of the GFC, followed by the COVID-
19 pandemic, and the recent inflation shock. The average conditional probability of being in a low-stress
state is 67% and can therefore be considered the default state. However, being in a high-stress state
is also relatively prevalent, with an average conditional probability of 24%, which is attributable to the
numerous crises of recent years, including the GFC, the sovereign debt crisis, Brexit uncertainty, Trump
tariffs, the COVID-19 pandemic, and the inflation shock. We also document that the EDI is correlated
with existing indicators of systemic stress, but clearly contains additional information.

(II) Monetary financial institutions (MFIs) are the largest contributors to the EDI over the entire sample
period, which is not surprising as the MFI sector forms the core of the euro area financial system and
acts as a hub between the economic sectors. However, since the beginning of the rate hike cycle, the

1 This includes amendments to the Capital Requirements Regulation (EU) No 575/2013 and the Capital Requirements Di-
rective 2013/36/EU in Europe and the Dodd-Frank Wall Street Reform and Consumer Protection Act of 2010 in the United
States.
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contribution of the MFI sector to the EDI has tended to decline, suggesting that the financial sector is
acting as a shock absorber rather than a shock accelerator during this episode. In addition, in the post-
GFC period since 2010, non-bank financial intermediaries (NBFIs) are the main contributors to the EDI,
which is in line with broader developments that have contributed to the growth in non-bank financial
intermediation post-GFC.

(III) The EDI has significant predictive power for aggregate macroeconomic developments, including key
macroeconomic variables for the state of the economy such as industrial production and unemploy-
ment rate. The predictive power is asymmetric and arises mainly from high-stress regimes.

To provide additional perspective and considering the importance of each sector for the function-
ing of the economy, we also examined in detail the raw stress indicators (i.e., DD) for each sector. This
is more akin to the conventional approach in the literature, which usually captures certain market or
instrument-specific stress symptoms (Chavleishvili and Kremer 2024). In summary, we document that
DD hasmoved sharply around key crisis events such as the GFC and the COVID-19 pandemic, with some-
times heterogeneous responses across economic sectors. The weighted average DD across all sectors is
13.8. We observe substantial level (standard deviation) differences between the different sectors, rang-
ing from 4.9 (1.9) for the MFI sector to 38.6 (9.8) for the households (HH) sector. The reasons for such
differences can be wide-ranging and include asset composition, differences in leverage, the regulatory
environment, and income stability. Recognizing the substantial level differences between economic sec-
tors, we also unpack the drivers of DD using the Lindeman, Merenda, and Gold (1980) approach, which
corresponds to Shapley values—a concept from cooperative game theory. By decomposing the impact
of the main drivers of DD—leverage, volatility, and interest rate—we show that asset volatility is clearly
the most important driver of DD across all economic sectors, accounting on average for almost 80%
of the explained variation. From a theoretical perspective, DD decreases as asset volatility increases.
Intuitively, higher volatility implies greater fluctuations in a sector’s future asset path, which increases
the likelihood that the distress barrier will eventually be reached. By specifying adequate volatility spike
scenarios to approximate the impact of a stress state, we observe a 273 point reduction in the average
DD to 11.1, a decrease of almost 20.0%.

Related Work. Our paper relates to work in the areas of systemic risk and financial stability; indica-
tors of financial stress, crises, and uncertainty; and real effects of financial distress. Key work in this
area include:2 Adrian and Brunnermeier (2016), Acharya et al. (2017), and Brownlees and Engle (2017)
propose measures of systemic risk at the level of individual financial institutions that contribute to fi-
nancial instability at the level of the financial system. Gilchrist and Zakrajšek (2012) and Saunders et al.
(2025) use a bottom-up approach based on corporate bond credit spreads and loan spreads, respec-
tively, to compute an aggregate credit spread index to capture the degree of strains in the financial
system. Kritzman et al. (2011) and Billio et al. (2012) proposed systemic risk measures (i.e., ‘Absorption
Ratio’ and ‘Cumulative Risk Fraction’, respectively) based on a principal component analysis of asset re-
turns by calculating the fraction of the aggregate return variance explained by the largest eigenvectors
of the variance-covariance matrix. In Kritzman and Li (2010) and Kritzman et al. (2011), Mahalanobis
distance-based measures of ‘Financial Turbulence’ are proposed to measure uncharacteristic behavior

2 For a comprehensive survey of systemic risk analytics we refer to Bisias et al. (2012), for an overview of financial stress
indices we refer to Chavleishvili and Kremer (2024), and more generally on financial crises to Sufi and Taylor (2022).
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in observed asset returns.
Saldías (2013) developsmethods formonitoring systemic risk in the European banking systembased

on forward-looking DD series. Laeven and Valencia (2008), Laeven and Valencia (2013), and Laeven and
Valencia (2020, p. 309) construct dummies for systemic banking crises for different countries and time
horizons based on either “significant signs of financial distress in the banking system” or “significant
banking policy intervention measures in response to significant losses in the banking system.” Baron,
Verner, and Xiong (2020) combine narrative information and bank equity returns to map banking crises
with and without panics.

Starting from the seminal work of Illing and Liu (2006), which proposes a concept for a ‘Financial
Stress Index’ of the Canadian financial system covering broader parts of the financial system including
the banking sector, the foreign exchange market, and debt and equity markets, a large number of in-
dices of financial market distress have been proposed. For the US, these include the ‘Financial Fragility
Indicator’ (Nelson and Perli 2007), the ‘Kansas City Financial Stress Index’ (Hakkio and Keeton 2009),
the ‘St. Louis Fed’s Financial Stress Index’ (Kliesen and Smith 2010), the ‘National Financial Conditions
Index’ (Brave and Butters 2011, 2012), the ‘Cleveland Financial Stress Index’ (Oet, Dooley, and Ong
2015), and the ‘Office of Financial Research Stress Index’ (Monin 2019). In addition, Van Roye (2014)
proposed a financial stress index for Germany, Cardarelli, Elekdag, and Lall (2011) for 17 advanced
economies, Vermeulen et al. (2015) for 28 OECD countries, and Groen, Nattinger, and Noble (2020)
measure global financial market stress in 46 countries comprising advanced and emerging economies.
Grimaldi (2010) introduced a financial stress indicator for the euro area based on 16 market-based fi-
nancial measures covering corporate bond, government bond, bank, equity, and money markets. Holló,
Kremer, and Lo Duca (2012) introduced the ‘Composite Indicator of Systemic Stress’ based on basic
portfolio theory to aggregate individual financial stress measures into market-specific sub-indices (in-
cluding financial intermediaries, non-financial equity market, bond market, money market, and foreign
exchange market) and subsequently into an overall indicator of financial stress. Similar ideas for euro
area sovereign bond market stress were extended in Garcia-de-Andoain and Kremer (2017), who de-
veloped a ‘Composite Indicator of Systemic Sovereign Stress’ that incorporates volatility and yield and
liquidity spreads into an overall index of sovereign bond market stress. Boyarchenko et al. (2024) pro-
pose a ‘Corporate Bond Market Distress Index’ that captures primary and secondary market measures
of corporate bond market functioning. Chavleishvili and Kremer (2024) present a general conceptual
and statistical framework for measuring the severity of financial crises in real time and address the con-
struction of different financial stress indices as special cases of the proposed general framework. The
main differences between the above stress indices are the selection of indicators, the considerations of
extremeness, and the co-dependence between the individual factors (i.e., the weighting schemes).

Romer andRomer (2017) construct a series of financial distress inOECD countries based onnarrative
reports of country conditions to provide information on the severity and evolution of distress following
crises episodes. Finally, Jurado, Ludvigson, and Ng (2015) and Baker, Bloom, and Davis (2016) introduce
general uncertainty indicators with the ‘Macroeconomic Uncertainty Index’ and the ‘Economic Policy
Uncertainty Index’, respectively.

Many of the above indicators also examine the real effects of financial distress and uncertainty and
show economically and statistically significant predictive power of measures of financial distress (in-
cluding, for example, financial stress indices, crisis dummies, systemic risk indicators, or credit spreads)
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for aggregate macroeconomic outcomes and future economic activity. Thereby, often asymmetric re-
sponses are observed, with stronger effects arising mainly from high-stress regimes (see, for example,
Bloom (2009), Gilchrist and Zakrajšek (2012), Holló, Kremer, and Lo Duca (2012), Hubrich and Tetlow
(2015), Baker, Bloom, and Davis (2016), Romer and Romer (2017), Adrian, Boyarchenko, and Giannone
(2019), Alessandri and Mumtaz (2019), Boyarchenko et al. (2024), Chavleishvili and Kremer (2024), and
Saunders et al. (2025)).

The main innovation of our proposed EDI as a device for real-time monitoring of the state of the
economy is the coverage of all sectors of the economy as defined by the national accounts. This is
in contrast to the conventional approach in the literature, which usually only captures certain market
or instrument-specific stress symptoms. The raw stress indicators in our approach are derived from
structural models of credit risk and therefore provide a unified measure of stress across all economic
sectors, rather than simply combining different heterogeneous financial variables from each sector. The
input factors for the structural credit risk models combine both market and sectoral balance sheet data.
We draw on sectoral balance sheets from the sectoral accounts, which represent a coherent, consistent,
and integrated set of macroeconomic accounts for an economy using internationally agreed definitions
and accounting rules.

The remainder of this paper proceeds as follows. Section 2 presents the theoretical framework.
Section 3 describes our data. Section 4 presents our main empirical results. Section 5 concludes.

2 Theoretical Framework

Our approach is based on contingent claims analysis (CCA), which is a generalizationof the optionpricing
models developed by Black and Scholes (1973) and Merton (1974). CCA provides a framework that
combines market and balance sheet information to obtain financial risk indicators. The approach is
typically used for individual firms, but we apply the same concepts at a sectoral level by viewing the
economy as a series of interconnected balance sheets (Gray, Merton, and Bodie 2010). In this way, the
liabilities of a sector can be valued as a contingent claim on the assets of that sector and equity can be
modeled as an implicit call option on the assets with a strike price equal to the face value of debt (i.e.,
the default barrier). The normalized distance between the market value of assets of a given sector and
the default barrier is the so-called distance-to-default (DD), which indicates the number of standard
deviations by which the market value of assets is away from the default barrier; thus, the measure is
easily comparable across sectors. This concept is sometimes also referred to as ‘distance-to-distress’
and ‘distress barrier’, respectively. Although distress (e.g., a rating downgrade) usually occurs before a
default, it can still have a significant impact on the debtor’s business activities. Since wework at sectoral
level, a sectoral distress is more conceivable than the default of an entire sector, hence we will use the
terms interchangeably.

Formally, followingMerton (1974), it is assumed that themarket value of a sector’s assets Vt follows
a geometric Brownian motion:

dVt = µVtdt+ σVtdWt, (1)

where Vt is the total value of the sector’s assets, µ is the expected return, σ is the volatility, andWt is
a standard Wiener process. For notational simplicity, we omit in what follows the dependence on the
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evaluation time t when it is clear from the exposition. It is straightforward to express the value of a
sector’s equity as a function of the value of the sector’s assets and issued debt using the Black-Scholes
formula for a call option:

E = VN(d1) – e–rTFN(d2), (2)

where E is the market value of the sector’s equity (sometimes also referred to as junior claims), F is the
face value of the sector’s debt, r is the instantaneous risk-free interest rate,N is the cumulative normal
distribution function, d1 is given by:

d1 =
ln(V/F) +

(
r+ 0.5σ2V

)
T

σV
√
T

, (3)

and d2 is d1 – σV
√
T. Since the value of equity is a function of the sector’s assets and time, it follows

from Ito’s lemma that the sector’s equity volatility is related to the sector’s asset volatility by:

σE =

(
V
E

)
∂E
∂V
σV. (4)

From the Black-Scholes-Merton model we know that ∂E∂V = N(d1), such that:

σE =

(
V
E

)
N(d1)σV. (5)

Ultimately, the DD is calculated as:

DD =
ln(V/F) +

(
µ – 0.5σ2V

)
T

σV
√
T

, (6)

where µ is the asset drift under the physical measure P; to change from the risk-neutral measureQ to
the physical measure P, we specify the following condition: µ = r + λσV, where λ is the market price
of risk. In our implementation, we assume a fixed market price of risk λ = 0.45, which corresponds to
the long-term average calculated byMoody’s KMV (Castrén and Kavonius 2009). While the equity E and
the corresponding volatility σE are easily observable and can be estimated, this is not the case for the
required total value of the sector’s assets V and the corresponding volatility σV. Therefore, we solve
Eq. (2) numerically using standard iterative techniques to obtain estimates for V and σV. We assume a
forecast horizon of 1 year (i.e., T = 1), which is standard in the literature.

To provide additional insights, we compute an average distance-to-default (ADD) as the average of
the sector-specific DD series weighted by total assets (Saldías 2013):

ADDt =
N∑
i=1

witDDit, (7)

where DDit is the sector-specific DD series for sector i at time t and wit is the corresponding sector
specific weight (i.e., total assets).

As an extension, in the spirit of Guo and Li (2022), we also consider a state-dependent (i.e., regime-
switching) geometric Brownian motion:
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dVt = µVstdt+ σVstdWt, (8)

where st ∈ {B, S} reflects the overall state of the economy, which is either in a state of boom B or stress S.
Estimating the Merton model iteratively and simultaneously determining the transition rates between
the two regimes is computationally complex and, from a systemic risk perspective, the stress state is of
greater concern when calculating financial risk indicators. Conditional on the economy remaining in a
state of stress during the forecast horizon, we define:

DDs =
ln(V/F) +

(
µs – 0.5σ2Vs

)
T

σVs
√
T

, (9)

where the parameters correspond to our specifications in Eq. (6), but under the assumption of s = S.
Note that V and F have no state index, as they are based on the currently available information. There-
fore, the specification can be understood rather as a stress scenario and not as an estimate of V and
F under stress. Since the expected return in our framework is specified as a function of volatility, we
are mainly interested in defining adequate measures of volatility spikes to approximate the impact of
a stress state. With this aim in mind, we follow two paths to obtain a measure of σEs as input to the
estimation. The first approach is guided by the marginal expected shortfall specification of Acharya
et al. (2017), where I5% denotes the set of days with the worst 5% market outcomes at daily frequency
(i.e., sectoral returns) for the past calendar year. Consequently, we can specify a sector-specific equity
volatility based on these tail days as:

σEtail = E[σE|I5%] =
1

|I5%|
∑
τ∈I5%

σEτ , (10)

where τ indicates a specific day in the set of I5%. Our second approach is more akin to classical stress
tests (Ding et al. 2022), where we define a two standard deviation (SD) volatility spike based on the
currently observed 12-month volatilities:

σEshock = σEt + 2 · SD(σEt–1,t), (11)

where the SD is determined over the past calendar year. We use the stressed equity volatility specifi-
cations in Eqs. (10) and (11) as inputs to obtain a DD in a stressed state according to Eq. (9), which we
refer to as DDtail and DDshock, respectively. Finally, we define the stressed DD as:

DDstress = min(DDtail ,DDshock). (12)

3 Data

Our paper draws on sectoral balance sheets from the quarterly sectoral accounts, which are derived
from the national accounts and published jointly by the ECB and Eurostat. The sectoral accounts provide
a coherent, consistent, and integrated set of macroeconomic accounts for an economy using interna-
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tionally agreed definitions and accounting rules.3We obtain data on financial accounts of the euro area
aggregate, which provide information on the financial assets and liabilities of different economic sectors
for the period from 1999 to 2023.4 As the data is published with a delay of around one quarter, we shift
the sectoral balance sheet data in the empirical exercise by one quarter. However, this is unproblem-
atic as the balance sheets of entire economic sectors move relatively slowly.5 As the market data (e.g.,
on volatilities and interest rates) are available at a much higher frequency, we keep the slow-moving
balance sheet data constant over the respective quarter and operate at a monthly level in the empirical
exercise;6 this enables better real-timemonitoring of the state of the economy by drawing on higher fre-
quency information. Economic sectors include households (HH), monetary financial institutions (MFI),
non-bank financial intermediaries (NBFI; i.e., other financial intermediaries, non-money market invest-
ment funds, insurance corporations, and pensions funds), non-financial corporations (NFCs), public sec-
tor institutions (PUB; i.e., central banks and general government), and the rest of the world (ROW).7,8

Financial instruments include monetary gold and special drawing rights, currencies, deposits, short and
long-term debt securities, short and long-term loans, quoted and unquoted shares, mutual fund shares,
insurance reserves, derivatives, and other accounts.

Some sectors in our setting, inter alia, general government and households, do not issue equity,
while non-financial corporations usually exhibit a high negative netwealth position—which corresponds
to the difference between financial assets and liabilities at the level of an individual sector.9 For these
sectors, we therefore define equity as equity plus net financial wealth position (Castrén and Kavonius
2013). For non-financial corporations, the value of equity is therefore reduced by the negative net finan-
cial wealth position, while for households equity is defined solely by the net financial wealth position.
For the government sector, junior claims are defined as issued government debt securities plus negative
net financial wealth position (Gray, Merton, and Bodie 2010). In addition, we define junior claims for
investment funds as investment fund shares and for pension funds as technical reserves and guarantees
due to the nature of their business model.

Following the standard convention in the literature, the face value of debt F (i.e., the distress barrier)
is specified as short-term liabilities plus half of long-term liabilities. The underlying assumption is that
a significant portion of long-term liabilities is not expected to mature during the forecast horizon and
therefore does not trigger distress (Nagel and Purnanandam 2020). We have classified monetary gold
and special drawing rights, currencies, deposits, short-term debt securities, short-term loans, deriva-
tives, and other accounts as short-term liabilities, while all other instruments are classified as long-term
liabilities.

In addition to the balance sheet data, we collect a broad set of market-based data from Refinitiv

3 We refer to the European System of Accounts (2010) published by Eurostat (2013), which contains the methodological
framework for this data.
4 Alternatively, the analysis can easily be extended to the country level.
5 Consequently, using this approach we obtain very similar results to when we do not shift the data.
6 Keeping the balance sheet data constant over the respective quarter can be regarded as unproblematic, as it only serves as
a model input in the iterative procedure.
7 The ROW sector is an important component that closes the system; if the deficits of the domestic borrowing sectors exceed
the surpluses of the domestic lending sectors, the remainder must be financed by the ROW.
8 For brevity, we present the results for the aggregated sectors, i.e., HH,MFI, NBFI, NFC, PUB, and ROW. However, the raw risk
indicators are of course estimated at the level of the individual sectors. The DD series for the individual sectors are available
from the authors upon request.
9 We refer to Castrén and Kavonius (2009) for a detailed examination of this aspect.
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Table 1. Model Input Summary Statistics

Mean SD Min Q25 Median Q75 Max

A. Market Equity (Normalized by Debt)

MFI 0.08 0.02 0.05 0.06 0.07 0.10 0.13
NBFI 1.30 0.11 1.13 1.21 1.27 1.42 1.48
HH 3.70 0.48 2.80 3.38 3.73 4.01 4.69
NFC 1.54 0.22 1.11 1.37 1.55 1.71 2.02
PUB 0.16 0.02 0.11 0.14 0.16 0.18 0.20
ROW 0.88 0.18 0.60 0.71 0.82 1.07 1.19

B. Equity Volatility

MFI 0.28 0.12 0.11 0.19 0.26 0.36 0.62
NBFI 0.23 0.07 0.13 0.17 0.22 0.28 0.45
HH 0.06 0.02 0.04 0.04 0.05 0.06 0.11
NFC 0.19 0.07 0.10 0.14 0.19 0.23 0.41
PUB 0.06 0.02 0.04 0.04 0.05 0.06 0.11
ROW 0.15 0.06 0.06 0.10 0.14 0.17 0.37

C. Risk-free Rate

All 0.02 0.02 -0.01 0.00 0.02 0.03 0.05

Notes for the table. This table shows the model input summary statistics for the entire sample period from 1999 to 2023. The
market equity values in Panel A are normalized by the nominal values of debt F and can therefore be interpreted as market
equity/debt ratios. The equity volatilities in Panel B correspond to 12-month volatilities, i.e., the sector-specific volatilities for
the financial (MFI and NBFI) and non-financial (NFC) sectors, the volatility of 10-year German government bonds for the public
sector institutions (PUB) and households (HH), and the volatility of theMSCI World for the rest of the world (ROW) sector. The
risk-free interest rate in Panel C is approximated by the 12-month EURIBOR.

as input for the equity volatility σE in our model. For the financial and non-financial sectors, we obtain
12-month sector-specific volatilities. For public sector institutions and households, we obtain the 12-
month volatility of 10-year German government bonds. For the rest of the world sector, we obtain the
12-month volatility of the MSCI world.10We also need a measure for the risk-free interest rate. We use
the 12-month EURIBOR from Refinitiv as an approximation. Table 1 provides summary statistics on the
main inputs used to estimate the DD series.

Finally, we also obtain information on existing indicators of systemic stress, including the Composite
Indicator of Systemic Stress (CISS; Holló, Kremer, and Lo Duca (2012)), the Macro Uncertainty indicator
(MACROUNC; Jurado, Ludvigson, and Ng (2015)), the Economic Policy Uncertainty index (EPU; Baker,
Bloom, and Davis (2016)), the EURO STOXX 50 Volatility index (VSTOXX50), and the Riskspread (i.e.,
Bbb-Aaa spread). The latter are both sourced from Refinitiv.

4 Results

We first present the DD and stressed DD series in different economic sectors. Next, we unpack the
drivers of the DD and examine the impact of the interest rate level and the pass-through rate. Armed
with this, we construct an Economic Distress Index (EDI), identify economic distress events, and com-

10We obtain qualitatively very similar results if we use estimates of conditional equity volatilities following the procedure
described in Nagel and Purnanandam (2020).
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pare the new index with contemporaneous market conditions and existing indicators of systemic stress.
Finally, we also investigate whether the EDI contains useful information for predicting macroeconomic
developments.

4.1 Distance-to-Default and Stressed Distance-to-Default

We report in Table 2 the summary statistics of the model-implied DD series according to Eq. (6) and
stressed DD series according to Eq. (9) over the entire sample period. The results in Panel A of Table 2
show that the weighted average DD across all sectors is 13.80, which is the average number of standard
deviations bywhich themarket value of assets is away from the default barrier. Relatively high values are
not unexpected as we consider the financial sectors, the real economy, public sector institutions, and
the rest of the world. However, we also find substantial level differences between the different sectors,
ranging from 4.89 for the MFI sector to 38.58 for the HH sector. The reasons for such differences can
be wide-ranging and include asset compositions, differences in leverage, the regulatory environment,
and income stability. It can also be observed that the standard deviation increases with the level of DD,
again with a minimum of 1.92 for the MFI sector and a maximum of 9.78 for the HH sector. Looking at
the stressed DD in Panel B of Table 2, we observe a reduction in the average DD by 273 points to 11.07,
which corresponds to a decline of almost 20.0%. A volatility spike would lead on average to the highest
relative decline in DD for the ROW and MFI sectors at 24.1% and 22.3%, respectively, and the lowest
relative decline for the PUB and HH sectors at 17.7% and 18.0%, respectively.

To provide additional insights, we show the time series developments of the DD and stressed DD
series in Figure 1. Panel A of Figure 1 shows the developments at an aggregated level together with a
24-month moving average and corresponding confidence bands with two standard deviations. At the
aggregate level, DD moved sharply around key crisis events such as the Global Financial Crisis (GFC) of
2007-08, the COVID-19 pandemic or, more recently, the inflation shock and corresponding interest rate
hikes. During the GFC, a sharp decline in the DD of more than 12 units can be observed, which was due
to high leverage that was exposed by a series of volatility shocks from August 2007 onwards. The high
default risk environment persisted until late 2009, even though interest rates were cut sharply at that
time and legacy assets shifted from the financial sector to public sector balance sheets. The COVID-19
shock led to a particularly sharp but relatively short-lived decline in DD. From February to March 2020,
the sharpestmonth-on-month decline in the entire sample periodwas observed at almost 6 units, which
is more than ten times the average month-on-month decline in our sample. This is a strong reminder
of the high uncertainty in the markets at this time due to a shock outside the financial system perime-
ter. Already in mid-2021, DD measures exceeded pre-COVID-19 levels; this rapid recovery is probably
attributable to the extensive use of COVID-19 moratoria and public guarantees. From December 2021,
a rapid decline in the DD can be observed, at a rate faster than during the GFC. This period coincides
with the ECB reversing its highly accommodative monetary policy by adjusting its forward guidance in
its monetary policy decision of 16 December 2021 and signaling a reduction in the pace of net asset
purchases, leading to an increase in the expected path of short-term interest rates (Lane 2023).

In Panel B of Figure 1, we show the parallel evolution of the DD and stressed DD series and the
corresponding difference between the two series; the larger the difference, the larger the impact of a
volatility spike. The average decline in DD in the stress scenario is 273 points, ranging from 80 to almost
880 points, with relative declines ranging from 7.1% to 45.9%. The year 2021 can be characterized as
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Table 2. Model-implied Distance-to-default Series

Mean SD Min Q25 Median Q75 Max

A. DD

Avg. 13.80 3.53 6.72 11.12 13.75 16.99 20.26
MFI 4.89 1.92 1.95 3.33 4.63 6.01 10.52
NBFI 7.67 2.95 2.17 5.75 7.40 9.09 17.66
HH 38.58 9.78 17.38 32.22 38.08 47.21 57.60
NFC 9.44 3.02 3.81 7.16 8.80 11.84 16.64
PUB 21.25 5.20 8.33 17.77 20.97 25.82 32.07
ROW 11.01 4.03 3.80 8.17 10.63 13.56 25.63

B. Stressed DD

Avg. 11.07 3.06 5.36 8.36 10.95 13.57 17.36
MFI 3.80 1.57 1.26 2.56 3.44 4.57 8.39
NBFI 6.10 2.47 1.45 4.33 5.95 7.47 14.79
HH 31.63 8.49 13.47 24.92 31.64 37.69 47.06
NFC 7.43 2.53 2.81 5.91 6.93 9.17 13.89
PUB 17.48 4.57 6.96 14.20 17.08 20.71 26.90
ROW 8.36 3.10 2.70 6.17 8.06 10.79 16.30

Notes for the table. This table shows the summary statistics of the model-implied estimates for the DD series in Panel A
according to Eq. (6) and the stressed DD series in Panel B according to Eq. (9) for the entire sample period from 1999 to 2023.
The average sector (‘Avg.’) is calculated as the average of the sector-specific DD and stressed DD series weighted by total assets.

the year with the largest impact of volatility spikes, implying that additional volatility spikes in this pe-
riod would have delayed the recovery from the COVID-19 pandemic, as this period also coincides with
significant increases in the inflation rate.

In Panels C and D of Figure 1, we show the developments of the DD series across sectors and the
dynamics of the DD series as empirical cumulative distributions, which is motivated by the large level
differences between sectors.Whilewe observe similar patterns during theGFC, with all sectors reaching
one of their lows, there are some notable differences between the sectors over time. For example,
looking at the period since December 2021, the lowest standardized levels are clearly observed for the
PUB and HH sectors, which are potentially more vulnerable to rate hikes, while comparably high relative
DDs are observed for the financial and non-financial sectors.

4.2 Distance-to-Default Drivers

Motivated by the different dynamics between the sectors, we now unpack the drivers of DD. We start
with a brief theoretical evaluation of the sensitivity of DD to sector-specific inputs (i.e., leverage and
volatility) by taking first- and second-order partial derivatives of Eq. (6):

∂DD

∂
(
V
F

) > 0 and
∂2DD

∂
(
V
F

)2 < 0 and
∂DD
∂σV

< 0 and
∂2DD
∂σ2V

> 0 and
∂2DD

∂
(
V
F

)
∂σV

< 0. (13)

In terms of leverage, DD increases as
(
V
F

)
increases, suggesting that a sector becomes safer as the sec-
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Figure 1. Distance-to-Default

Notes for the figure. This figure shows the DD and stressed DD series. The average DD in Panel A is calculated as the average
of the sector-specific DD series weighted by total assets. The average is presented together with a 24-month moving average
and corresponding confidence bands with two standard deviations. The parallel development of the DD series according to
Eq. (6) and the stressed DD series according to Eq. (9) is shown in Panel B. The development of the DD series by economic
sectors is shown in Panel C. The dynamics of the DD series as empirical cumulative distributions are shown in Panel D.

tor’s assets increase relative to its debt. The second partial derivative indicates that the marginal utility
of an increase in assets decreases with a larger ratio of

(
V
F

)
. This observation is reminiscent of ideas

in the macro literature by Bernanke, Gertler, and Gilchrist (1999), namely that an increase in the bor-
rower’s ‘net worth’ reduces the expected probability of default and the external finance premium, both
of which suggest that the borrower (e.g., sector) becomes safer as assets (i.e., net worth) increases. For
volatility, DD decreases as volatility (σV) increases. The basic explanation for this is that higher volatility
implies greater fluctuations in a sector’s future asset path, which increases the likelihood that the dis-
tress barrier will eventually be reached. The second partial derivative indicates that the decline in DD
accelerates with increasing volatility. The mixed partial derivative suggests that increasing one variable
has a decreasing effect on DD when the other variable is also high. For example, an increase in a sec-
tor’s assets relative to its debt helps less to make the sector safer when volatility is also high, while the
negative impact of increased volatility is mitigated when the sector’s assets relative to debt are high.
Alternatively, one could think of this by defining leverage as debt-to-asset ratio

(
F
V

)
such that a sector

becomes more vulnerable to a decline in DD in the event of an increase in volatility if leverage is also
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high, and vice versa.
Having theoretically examined the sensitivity of DD to sector-specific inputs, we also aim to under-

stand the drivers of DD in a given sector from an empirical perspective. Therefore, we decompose the
relative importance of each input factor in a regression model by decomposing the model’s total R2

(Grömping 2007); formally, the R2 for a model with regressors in setW can be written as:

R2(W) =
MSS
TSS

=
∑m( ŷm – ȳ)2

∑m( ym – ȳ)2
, (14)

where R2(W)measures the proportion of variation explained by the regressors in themodel, MSS is the
model sum of squares (i.e., explained variation), and TSS is the total sum of squares. The incremental
R2 when adding regressors from the set A to the model with regressors from the setW is thus given
by:

∆R2(A|W) = R2(A ∪ W) – R2(W). (15)

Assuming uncorrelated regressors, the resulting incremental increase in R2 could then naturally be in-
terpreted as the corresponding contribution of set A. However, this is typically not the case when re-
lying on empirical data, as the regressors are usually at least modestly correlated and therefore the
order of addition of the regressors to the model becomes important. Therefore, we decompose the R2

into non-negative, non-order-dependent contributions of each input factor by relying on the Lindeman,
Merenda, and Gold (1980) (LMG) approach. The general idea of the LMG approach is also based on
the incremental R2, but considers the order of the regressors by averaging over the orders. The order
of the regressors in any model is simply a permutation of the variables x1, . . . , x p and is captured by
the tuple of indices ψ = (ψ1, . . . ,ψ p), where Ψ comprises the set of all permutations.11 For a given
permutationψ ∈ Ψ,Wk(ψ) denotes the set of regressors that entered the model before the regressor
xk, which allows us to define the incremental R2 allocated to the regressor xk in the permutation ψ as:

∆R2({xk}|Wk(ψ)) = R2({xk}∪ Wk(ψ)) – R
2(Wk(ψ)). (16)

Finally, the LMGmetric for a given regressor xk is calculated as the average of the incremental R2 values
over all permutationsΨ:

LMG(xk) =
1
|Ψ|

∑
ψ∈Ψ

∆R2({xk}|ψ). (17)

Stufken (1992) showed that this approach is equivalent to the Shapley value calculation—a concept
from cooperative game theory—and thus has certain desirable properties and is well embedded in
economic theory.12

In Table 3, we show the drivers of DD at an aggregate level across sectors; for easier interpretability,
the contributions assigned to the input factors are scaled such that they sum to one instead of adding

11 For p regressors,Ψ contains p! permutations; in the case of three regressors ( p = 3) there are six different permutations
(i.e., 3!= 1 · 2 · 3= 6).
12 Shapley values have recently gained prominence as a tool for interpreting forecasts from so-called ‘black-box’ models due
to the unprecedented rise in machine learning applications. Recent applications include Bali et al. (2023) and Griffin, Hirschey,
and Kruger (2023).
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Table 3. Distance-to-Default Drivers on Aggregate

Avg. MFI NBFI HH NFC PUB ROW

Volatility 0.79 0.46 0.80 0.89 0.89 0.82 0.86
Leverage 0.15 0.35 0.13 0.10 0.10 0.14 0.09
Risk-free rate 0.06 0.19 0.07 0.01 0.01 0.04 0.04

R2 0.88 0.89 0.84 0.90 0.90 0.93 0.83

Notes for the table. This table shows the drivers of DD over the entire sample period by decomposing the relative importance
of each input factor in a regression model by decomposing the model’s total R2 based on the Lindeman, Merenda, and Gold
(1980) approach. The contributions assigned to each input factor are scaled such that they sum to one instead of adding up
to R2. The average (‘Avg.’) represents the simple average over all sectors.

up to R2. On average, a regression of leverage, volatility, and risk-free rate on DD explains 88% of the
variation inDD, ranging from83% to 93%. Volatility is clearly themost important driver of DD, accounting
on average for almost 80% of the explained variation and reaching almost 90% in certain sectors. One
exception is the MFI sector, for which volatility is the most important factor at only 46%, while leverage
at 35% is 20 percentage points more important than for the average sector. The main reason for this
is the nature of the MFIs business model, where leverage plays an essential role. The GFC reminded
us that too much leverage can be perilous, but MFIs also operate with much lower asset risk, which
explains up to 90% of the difference in leverage between MFIs and other firms (Berg and Gider 2017).
The risk-free rate has a relatively modest impact at 6% on average, ranging from 1% for HHs and NFCs
to 19% for MFIs.

To better understand the dynamics of the input factors, we show in Figure 2 the relative importance
assigned to the input factors over timeby running 60-month rolling-window regressions; thismeans that
for a given point in time the preceding 60 months are taken into account in the estimation.13 The error
part (i.e., gray) in the figure indicates the unexplained variation, which essentially reflects the resid-
ual sum of squares ∑m( ŷm – ym)2. While there are some fluctuations in the dynamics over time, it is
clearly evident that for all sectors, volatility is the main driver of DD. However, some notable patterns
can also be observed in relation to the other input factors. For the MFI sector, for example, the inter-
est rate component became considerably more important with the onset of the sovereign debt crisis
in 2010—sovereign and MFI risks are often closely linked—and peaked exactly six months after Mario
Draghi’s infamous ‘Whatever it takes’ speech in July 2012, while its relative importance declined quickly
thereafter. By construction, therewill be some information lag in the relative importance, but this obser-
vation emphasizes how accurately and quickly the information feeds into the metric around key events.
This pattern cannot be observed for the recent rate hike period; several factors could explain these dif-
ferences, such as the fact that MFIs entered this period with a much stronger capital position due to
intensive regulatory reforms, which made them less vulnerable to the effects of interest rate hikes, the
improved asset quality in MFI loan portfolios, and the sluggish interest rate pass-trough on the liability
side of the balance sheet, which has important implications for funding costs and profitability (Messer
and Niepmann 2023). For HHs, the importance of leverage

(
V
F

)
increased rapidly in the run-up to the

13Wehave chosen a time horizon of 60months in order to include a sufficiently large number of observations in the estimation
while also being able to examine developments in the run-up to the GFC. Generally, the shorter the selected horizon, the
greater the potential fluctuations, and the longer the selected horizon, the more the importance will be smoothed out.
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Figure 2. Distance-to-Default Driver Dynamics

Notes for the figure. This figures shows the drivers of DD over time by running 60-month rolling-window regressions. The
drivers at each point in time are derived by decomposing the relative importance of each input factor in a regressionmodel by
decomposing the model’s total R2 for the preceding 60 months based on the Lindeman, Merenda, and Gold (1980) approach.
The error part in the figure indicates the unexplained variation (i.e., residual sum of squares).

GFC and peaked around mid-2009, with the potential drivers being inflated or deflated asset values de-
pending on the period. In addition, the average importance of the interest rate component since the
start of the rate hike cycle in July 2022 is more than 20 percentage points higher than the average over
all previous periods. A rise in interest rates affects borrowing costs, savings and investment decisions,
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or makes refinancing more challenging (i.e., on the liability side of the HH balance sheet), which in com-
bination with the sluggish pass-through of policy rates to deposit rates (Messer and Niepmann 2023)
on the asset side of the HH balance sheet aggravates the situation.

4.3 Impact of Interest Rate Level and Pass-through Rate

In this section, we substantiate the different effects of pass-through rates on DD in a stylized model.
We start again with our expression for DD from Eq. (6), but now assume that assets V and debt F are
portfolios of instruments:

DD =
ln(A/P) +

(
µ – 0.5σ2V

)
T

σV
√
T

, with

A = αDA + βBA + γLA and P = δDP + θBP +ωLP.
(18)

D, B, and L denote the value of deposits, bonds, and loans on the assets and liabilities side of the bal-
ance sheets, respectively, with α, β, γ, δ, θ, and, ω are the weights in the asset-liability mix.14 Debt
instruments (e.g., bonds) can be priced as follows:

B =
F

(1+ r)n
+ C

1 – (1+ r)–n

r
, (19)

where F is the face value of debt, C the coupon, r the interest rate, and n the number of periods. Re-
arranging the terms and introducing a pass-through rate φ∈ [0, 1], where 0 denotes no pass-through
and 1 denotes full pass-through, allows us to show the sensitivity of DD to the interest rate depending
on the pass-through rate:

B = FB + CB
(1+ r)n – 1

r
φB. (20)

In order to isolate the effect of the pass-through rate for a particular instrument, we only vary the pass-
through rate of one instrument at a time,whilewe assume a full pass-through for the other instruments;
i.e., for bonds, for example, we assume 0 >= φB <= 1 andφD = φL = 1. The same procedure applies
to the other instruments. Ultimately, we plug these terms into the expressions for the DD in Eq. (18)
and take first-order partial derivatives with respect to: ∂DD∂r .

Figure 3 shows the results of our stylized example for selected instruments. The values for the asset-
liability mix are considered for December 2023, the latest reference date in our sample. We consider a
constant volatility of 15% (i.e., around the median in our sample), a coupon rate of 5%, a pass-through
rate between 0 and 1, and an interest rate of 0.5% to 5%.Wewill mainly discuss the observations related
to MFIs (Panels A and B) and HH (Panels E and F), since on the asset side MFIs extend a considerable
amount of loans to HHs (liability side), which account for about 50% of all long-term loans extended,
and on the liability side collect a considerable amount of deposits from HH (asset side), which account
for more than one third of all deposits. A sluggish interest rate pass-trough on the liability side (e.g.,
deposits) of theMFI balance sheet has important implications for funding costs and profitability (Messer

14 For brevity, we only consider debt instruments in this stylized example, but the same idea can easily be extended to all
instruments on the balance sheet.
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Figure 3. Impact of Interest Rate Level and Pass-through Rate

Notes for the figure. This figure shows the different effects of pass-through rates on DD for selected instruments on the asset
(A) and liability (P) side of the sectoral balance sheets. To isolate the effect of the pass-through rate for a particular instrument,
we vary only the pass-through rate for one instrument at a time, while assuming full pass-through (i.e., φ = 1) for the other
instruments. The interest rate is varied in steps of 0.5 percentage points, with a darker line indicating a higher interest-rate
level.

and Niepmann 2023). Therefore, for MFIs, a low pass-through rate tends to have a positive impact on
DD when interest rates rise, i.e., MFIs remain safer as they can still rely on cheaper funding, which
is intuitively plausible. For HHs, the opposite is true, i.e., the lower the pass-through rate, the more
pronounced the adverse effect on DD, which seems to be more pronounced the lower the interest rate
level. This is also intuitively plausible, as an increase in interest rates affects borrowing costs, but at
the same time HHs do not benefit from higher interest rate income on their asset side, which reduces
their disposable income and thus affects their financial health; this observation is consistent with the
observations in the macro-finance literature that shocks to disposable income/financial wealth have
a notable impact on financial health (Bernanke, Gertler, and Gilchrist 1999; Hatchondo, Martinez, and
Sánchez 2015; Gerardi et al. 2018). The reversemechanism applies to loans, namely a low pass-through
rate has a decreasing effect on DD for MFIs and an increasing effect on DD for HHs.

4.4 Economic Distress Index

In the previous sections, we have mainly discussed financial risk indicators at sectoral level. However,
the landscape of the financial system is characterized by complexity and interconnectedness. Therefore,
in this sectionwe attempt to take a holistic approach to systemic risk and construct an Economic Distress
Index (EDI) that incorporates information from all economic sectors. Such an index can be thought of
as a statistical function composed of three main components (Chavleishvili and Kremer 2024): (i) an N-
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dimensional vector of raw stress indicators (e.g., sectoral DD series), (ii) a conformable vector of weights
of the individual raw stress indicators (e.g., relative size of the sectors), and (iii) a vector or matrix of
systemic risk weights that captures the co-dependency between the raw stress indicators. Our approach
in constructing the EDI is in the spirit of previous work by Holló, Kremer, and Lo Duca (2012) on the
Composite Indicator of Systemic Stress (CISS) and Boyarchenko et al. (2024) on the Corporate Bond
Market Distress Index (CMDI). We now briefly describe the steps for constructing the EDI.

Distress Indicator Standardization. A sectoral distress ismore conceivable than the default of an entire
sector. Therefore, we do not use the raw DD series in the construction of the index, but the headroom
of our sectoral DD series from Eq. (6) to a divergence of two standard deviations (SD) from the long-
run (LR) moving average using an expanding window approach. We calculate the distress metric as:
Dit = (meanLR(DDi∆t) – 2 · SDLR(DDi∆t)) – DDit, where ∆t denotes the interval of the available DD
series up to time t. This is our preferred specification for several reasons; it is arguablymore conservative
in indicating stress in a sector, it is more akin to classical stress tests, and it is appealing because it is
usually desirable for stress indicators to increase with the level of stress (Chavleishvili and Kremer 2024),
which is not the case for the raw DD series.15 However, since we observed large level differences across
sectors in Section 4.1, we standardize the distress indicators with the empirical cumulative distribution
function (CDF). For a given sector i∈ [0,N], the distress series is denoted byDit, with t = 1, . . . , T, and
the corresponding ranked series is denoted by

(
Di[1], . . . ,Di[T]

)
, withDi[1] ≤ Di[2] ≤ · · · ≤ Di[T]. The

standardized distress series zit, with t = 1, . . . , T, can then be obtained by:

zit = F̂iT(Dit) =


ζ
T ∀Di[ζ] ≤ Dit < Di[ζ+1], ζ = 1, 2, . . . , T – 1,

1 ∀Dit ≥ Di[T],

0 ∀Dit < Di[1].

(21)

We compute the empirical CDF using an expanding window approach rather than for the entire sample,
which is necessary to avoid a forward-looking bias when tracking market conditions in real time. Our
starting window for the transformation covers a 24-month horizon and is subsequently expanded by
one month at a time.

Time-varying Correlations. Stress indicators often exhibit strong co-dependence, hence it is important
to consider how stress in one sector is related to stress in another sector. This aspect is not taken into
account, for example, when calculating the average DD according to Eq. (7). We calculate time-varying
correlation weights ρi j between the economic sectors using rank correlations following Chavleishvili
and Kremer (2024). The time-varying correlations are estimated recursively (i.e., in line with our stan-
dardization of distress indicators) with exponentially weighted moving averages (EWMA):

σi j t = λσi j t–1 + (1 – λ)z̃itz̃ j t, i, j = 1, . . . , 6,

σ2it = λσ
2
it–1 + (1 – λ)z̃2it,

ρi j t = σi j t/σitσ j t,

(22)

where σi j t denotes the covariance between the sectors i and j , σ2it the variance of the sector i, and
z̃it = (zit – 0.5) the standardized distress indicators normalized by their theoretical mean of 0.5. We

15 However, in unreported analyses, we find that our conclusions remain unchanged if we use the raw DD series.
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collect the time-varying correlation coefficients ρi j in the correlation matrix Rt. In the implementation
of the EWMA, we use a constant smoothing factor of λ = 0.9 (Boyarchenko et al. 2024), which assigns
an exponentially decreasing weight to older observations and gives more weight to more recent data.

Index Construction. Now we are armed with all the ingredients to create the EDI that contains infor-
mation from all sectors as:

EDIt =
√
(wt ⊙ zt)′Rt(wt ⊙ zt), (23)

where zt = [z1t, . . . , z6t]′ is the column-vector of index constituents (i.e., standardized sectoral distress
indicators), wt = [w1t, . . . ,w6t]′ is a conformable vector of time-varying weights (i.e., total assets by
sector),⊙ denotes the element-wise product (i.e., Hadamard product).

Resulting Index. Figure 4 shows the time series of the EDI together with the relative contributions of
individual sectors over time. To provide additional perspective, the percentiles of the index distribution
over the entire sample period are shown on the right-hand axis. As a starting point for examining the
value of the newly constructed index, we assess in Panel A of Figure 4 how well the index tracks past
periods of systemic stress. The index is significantly elevated or downward sloping near key events. The
highest index value is reached in late 2008 and early 2009 in the wake of the GFC (a and b). The upward
trend already began in mid-2005 and accelerated particularly strongly from the second half of 2007.
The recovery from the GFC and the accompanying downward trend of the index was halted with the
outbreak of the sovereign debt crisis in Europe in April 2010 (c) and only returned to a strong downward
trend around Mario Draghi’s infamous ‘Whatever it takes’ speech in July 2012 (d). Around the COVID-
19 pandemic (h), by far the largest month-on-month increase of almost 0.50 points was recorded from
February to March 2020. To put this into perspective, the average and median increase is 0.031 points
(0.025) and 0.020 points (0.019) over the entire sample period (pre-COVID-19). In thewake of the recent
inflation shock and the corresponding interest rate hikes (i), a strong upward trend in the index can
be observed, which began around the end of 2021. This marks the period when the ECB started to
reverse its highly accommodative monetary policy by adjusting its forward guidance in its monetary
policy decision of 16 December 2021 (Lane 2023).

Index Contributions. Next, we decompose themost contributing sectors to the EDI in Panel B of Figure
4 by decomposing the square of the index (Boyarchenko et al. 2024); this is appealing because the
square of the index allows a linear decomposition as it is additive in the components. Formally, this
decomposition can be expressed as follows: (wt ⊙ zt) ⊙ Rt · (wt ⊙ zt); for easier interpretability, the
contributions associated with the sectors are scaled by the squared index such that they sum to one.
Over the entire sample period, the MFI and HH sectors had the highest relative contribution at 0.220
and 0.209, respectively. This is not surprising as theMFI sector forms the core of the euro area financial
system andMFIs, as the key financial intermediaries, act as a hub connecting the different sectors of the
economy (EuropeanBankingAuthority 2024). Since the beginning of the rate hike cycle, the contribution
of theMFI sector to the EDI has tended to decline, suggesting that the financial sector is acting as a shock
absorber rather than a shock accelerator during this episode. The contribution of HHs was particularly
high in the run-up to the GFC and somewhat moremodest afterwards. Another notable development is
the strong increase in the contribution of the NBFI sector since the GFC; while the average contribution
up to 2010 was only 0.034, it has been 0.251 since 2010, exceeding the MFI sector by as much as 4.20
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Figure 4. Economic Distress Index

Notes for the figure. This figure shows the monthly time series of the Economic Distress Index (EDI) in Panel A and the corre-
sponding relative contributions to the squared EDI in Panel B. Light gray shaded areas in Panel A indicate recession periods
according to the euro area business cycle network. The horizontal dot-dashed lines indicate key events: (a) subprime crisis, (b)
Lehman Brothers bankruptcy, (c) European sovereign debt crisis, (d) Mario Draghi’s ‘Whatever it takes’ speech, (e) ECB’s asset
purchase programmes, (f) Brexit referendum, (g) Trump tariffs, (h) COVID-19 pandemic, and (i) reversal of accommodative
monetary policy. The percentiles of the index distribution over the entire sample period are shown on the right-hand axis.
The values highlighted in magenta are corresponding to the key events.

points for this period. This is in line with broader developments following the GFC, where technological
innovations and regulatory reforms have contributed to growth in financial intermediation outside the
banking sector perimeter (Acharya, Cetorelli, and Tuckman 2024; European Banking Authority 2024).

4.5 Identification of Economic Distress Events

For the index to be of practical use, decision-makers need to be able to identify periods of elevated
systemic stress and distinguish them from periods of moderate or low systemic stress. As a natural
starting point, we attempt to identify in the spirit of Holló, Kremer, and Lo Duca (2012) elevated stress
levelsmore formally by runningMarkov switchingmodelswith up to three latent states (Hamilton 2010):

EDIt = αst + βstEDIt–1 + σstϵt, st = {1, 2, 3}, (24)

where EDIt–1 is the one-period lagged EDI,βst denotes the corresponding slope coefficients, andσst and
ϵt∼N(0,σ2) the respective residual standard deviations and residuals. The intercept term αst follows a
first-orderMarkov chainwith up to three states, which implies that the future regime is only determined
by the current regime, with transition probabilities πc f for the transition from the current state c to the
future state f: 

π11 π12 π13

π21 π22 π23

π31 π32 π33


.

(25)

In Table 4, we show standard summary statistics of the different model specifications, including the
Log likelihood, Akaike information criterion (AIC), and Bayesian information criterion (BIC). In addition,
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Table 4. Specifications of Regime-switching Models

Model States Log likelihood AIC BIC RCM

MS-DR(1) 2 -462.96 -919.92 -892.82 21.64
MS-AR(1) 2 -467.95 -927.89 -891.75 23.71
MS-DR(1) 3 -497.75 -987.49 -951.35 12.02

Notes for the table. This table shows different specifications ofMarkov switchingmodelswith up to three states. DR(1) denotes
a first-order dynamic regression model in which the slope coefficients are identical between the states. AR(1) denotes a first-
order autoregressive model in which the slope coefficients can vary between the states. RCM denotes the refined Regime
Classification Measure according to Baele (2005). The RCM measure is bounded between 0 and 100, with a perfect model
converging to zero, and a model that cannot distinguish between the states converging to 100.

we also compute the refined Regime Classification Measure (RCM) according to Baele (2005), which
essentially measures the regime classification performance of a given model:

RCM = 100

(
1 –

S

S – 1
1
T

T
∑
t=1

S
∑
s=1

(
πst –

1
S

)2)
, (26)

where S denotes the number of states, T the number of observations, and πst the smoothed probabil-
ity of being in state s = 1, . . . , S at time t. The RCM measure is bounded between 0 and 100, with a
perfect model converging to zero, and a model that cannot distinguish between the states converging
to 100. With the aim of estimating a parsimonious model, we start by comparing two specifications of
Markov switching models with two states. The difference is that in the first specification—first-order
dynamic regression (DR(1))—the slope coefficient remains constant between states, whereas in the
second specification—first-order autoregressive model (AR(1))—it can vary between states. The model
summary statistics are relatively close, but the parsimonious specification appears to have a better
regime classification performance, as measured by the RCM. This suggests that state-dependent slope
coefficients are less important, which is consistent with previous observations in the literature on sys-
temic stress indices (Holló, Kremer, and Lo Duca 2012). For comparison, we also run a DR(1) with three
states; it can be observed that the model with three states leads to considerably better model sum-
mary statistics and also achieves a much sharper regime classification at 12.02. In terms of goodness
of fit, the correlation between the expected fitted values of the three-state Markov switching model
and the realized EDI is 0.98 and the captured variation in the data is 96.01%, suggesting that the model
successfully captures the variation in the realized EDI.

In Table 5 we show the estimated parameters and additional metrics of the three-state Markov
switching model. The state-dependent intercepts αs and the corresponding unconditional means differ
considerably between the different states, ranging from 0.28 to 0.62. For convenience, we refer to these
states as ‘low-stress’, ‘medium-stress’, and ‘high-stress’. The average conditional probability of being in
a low-stress state is 67% and can therefore be considered the default state. Being in a high-stress state
is also relatively prevalent, with an average conditional probability of 24%, which is likely attributable
to the numerous crises of recent years, including the GFC, the sovereign debt crisis, Brexit uncertainty,
Trump tariffs, the COVID-19 pandemic, and the inflation shock. The fraction of months in which the
most likely regime is in low, medium, and high stress is similar to the average conditional probabilities.
The corresponding Markov chain transition probabilities πc f between states are:
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s1 s2 s3
s1 0.93 0.04 0.03

s2 0.37 0.41 0.22

s3 0.08 0.09 0.84 ,

which indicates that the low-stress and high-stress states are highly persistent, while themedium-stress
state is much less persistent. For a one-month horizon, the probability of remaining in a low-stress (high-
stress) regime is 93% (84%), which is intuitively plausible. In addition, it is relatively more likely to move
to an intermediate state rather than directly from the low-stress to the high-stress state and vice versa.

Table 5. Results from Estimation of Regime-switching Model

Param. s1 s2 s3 Metrics s1 s2 s3

α 0.015 0.043 0.075 Means 0.28 0.44 0.62
(4.796) (1.278) (12.739) Avg. Prob. 0.67 0.08 0.24

β 0.912 Frac. Months 0.68 0.06 0.26
(105.456) Mean RD Prob. 0.97 0.93 0.90

σ 0.023 0.149 0.016 Median RD Prob. 0.99 1.00 0.99

Notes for the table. This table shows the parameter estimates of the three-state Markov switching model according to Eq.
(24). s1, s2, and s3 denote low, medium, and high-stress states, respectively. The estimation is based on a first-order dynamic
regression model in which the slope coefficients are identical, but the intercepts can vary between states. Means denote the
state-dependent unconditionalmeans. Avg. Prob. and Frac.Months denote the average probability and the fraction ofmonths
of being in each of the indicated states. Mean RD Prob. and Median RD Prob. denote the average and median probability of
the dominant regime.

4.6 Economic Distress and Contemporaneous Market Conditions

We consider the main application of the newly constructed EDI to be real-time monitoring of the state
of the economy. Therefore, we now compare the index with existing measures of contemporaneous
market conditions and systemic stress in the literature. As a starting point, we look at the correlations
between the EDI and existing indicators in Table 6. We find a positive correlation with all indicators,
ranging from 0.34 (EPU) to 0.77 (CISS). This suggest that while the EDI correlates with existing indicators
from the literature used to measure market conditions, it contains some different information.

To examine the correlations between the indicators more formally, we run regressions of the fol-
lowing form (Boyarchenko et al. 2024):

EDIt = α+ βEDIt–1 + γ′Mt + ϵt, (27)

where M denotes the vector of existing measures of contemporaneous market conditions. Column
(1) in Table 7 shows that the EDI is highly persistent, which is consistent with our previous conclusion
regarding the transition probabilities between economic states. Furthermore, it can be seen that the
additional explanatory power of existing indicators is relatively limited besides the information already
contained in the lagged EDI. In column (7), where we consider the full model, the lagged EDI remains
both highly statistically and economically significant. The CISS as a market-specific index for the euro
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Table 6. Correlation with Existing Indicators

EDI CISS VSTOXX50 Riskspread MACROUNC EPU

EDI 1.00
CISS 0.77 1.00
VSTOXX50 0.67 0.72 1.00
Riskspread 0.68 0.80 0.66 1.00
MACROUNC 0.61 0.47 0.54 0.29 1.00
EPU 0.34 0.09 0.18 -0.01 0.45 1.00

Notes for the table. This table shows the correlations between the EDI and existing indicators from the literature. CISS refers
to the Composite Indicator of Systemic Stress (Holló, Kremer, and Lo Duca 2012), VSTOXX50 to the EURO STOXX 50 Volatility
index, Riskspread to the Bbb-Aaa spread, MACROUNC to the Macro Uncertainty indicator (Jurado, Ludvigson, and Ng 2015),
and EPU to the Economic Policy Uncertainty index (Baker, Bloom, and Davis 2016). We have divided VSTOXX50 and EPU by
100.

Table 7. EDI and Contemporaneous Market Conditions

(1) (2) (3) (4) (5) (6) (7)

EDIt–1 0.972∗∗∗ 0.864∗∗∗ 0.883∗∗∗ 0.927∗∗∗ 0.916∗∗∗ 0.956∗∗∗ 0.813∗∗∗

(0.015) (0.030) (0.027) (0.025) (0.028) (0.021) (0.034)
CISSt 0.213∗∗∗ 0.159∗∗∗

(0.040) (0.039)
VSTOXX50t 0.461∗∗∗ 0.277∗∗∗

(0.106) (0.089)
Riskspreadt 0.023∗∗∗ -0.006

(0.008) (0.006)
MACROUNCt 0.178∗∗∗ 0.061

(0.066) (0.039)
EPUt 0.016∗ 0.017∗∗∗

(0.009) (0.005)

Adj. R2 0.950 0.962 0.965 0.953 0.957 0.953 0.972
Obs. 249 249 249 249 249 249 249

Notes for the table. This table shows the estimates of the contemporaneous regressions according to Eq. (27). The dependent
variable in all columns is EDI at time t. CISS refers to the Composite Indicator of Systemic Stress (Holló, Kremer, and Lo Duca
2012), VSTOXX50 to the EURO STOXX 50 Volatility index, Riskspread to the Bbb-Aaa spread, MACROUNC to the Macro Uncer-
tainty indicator (Jurado, Ludvigson, and Ng 2015), and EPU to the Economic Policy Uncertainty index (Baker, Bloom, and Davis
2016). We have divided VSTOXX50 and EPU by 100. Newey-West (1987) standard errors are reported in parentheses. ∗ p <
0.1, ∗∗ p < 0.05, and ∗∗∗ p < 0.01.

area, the VSTOXX50, and the EPU also contain some additional explanatory power. This supports the
idea that the EDI is correlated with existing indicators but clearly contains additional information for
real-time monitoring of the state of the economy.

4.7 Economic Distress and Real Effects

As an extension, we investigatewhether the EDI also contains useful information for forecastingmacroe-
conomic developments. To this end, we apply the local projection technique proposed in Jordà (2005)
to estimate impulse responses. Our baseline specification is a standard forecasting regression:
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yt+h = α+ β yt–1 + γEDIt + δTS+ νROR+ ϵt+h, h = 0, 1, . . . ,H, (28)

where h is the forecast horizon, y is themacroeconomic variable of interest, EDI is the newly constructed
Economic Distress Index, TS is the term spread—slope of the yield curve, defined as the difference
between the 10-year euro government bond (GDP-weighted) and the 3-month EURIBOR, ROR is the
real overnight rate—overnight rate minus realized inflation.16 The baseline specification is in the spirit
of earlier work by Gilchrist and Zakrajšek (2012) and Saunders et al. (2025). We use keymacroeconomic
variables for the state of the economy, including log industrial production and the unemployment rate,
obtained from Eurostat at a monthly frequency in levels, as is standard in applied work (Li, Plagborg-
Møller, andWolf 2024). The impulse response is constructed simply as a sequence of the γh’s estimated
in a series of separateOLS regressions for each forecast horizon h. Since it is conceivable that the impulse
responses depend on the state of the economy, the local projection technique can easily be adapted to
this nonlinear case where the data are split into two regimes using an indicator variable I. To construct
the indicator variable, we use as a threshold the unconditional mean of the medium-stress state in our
regime-switching model in Section 4.5.17 Consequently, the indicator I = 1 if the index is greater or
equal to the medium-stress state, and 0 otherwise:

yt+h = It–1[αA + βA yt–1 + γAEDIt + δATS+ νAROR]

+ (1 – It–1)[αB + βB yt–1 + γBEDIt + δBTS+ νBROR] + ϵt+h, h = 0, 1, . . . ,H.
(29)

To avoid instability in the parameters due to unprecedentedly large movements induced by the COVID-
19 pandemic, we estimate the forecasting regressions in line with previous work by Boyarchenko et al.
(2024) with data up to 2020.18 As discussed in Jordà (2005), the local projection technique is subject to
serial correlation in the error terms caused by the successive leading of the dependent variable. There-
fore, we use Newey-West (1987) standard errors to obtain 95% confidence intervals around the impulse
responses.

The impulse responses are shown in Figure 5. Panels A and C indicate that an increase in the EDI has
significant predictive power for both macroeconomic variables, with coefficients consistent with eco-
nomic intuition. An increase in the EDI by one standard deviation is associated with a decrease/increase
in the industrial production/unemployment rate by an average of 0.33/0.24 standard deviations, respec-
tively. However, Panels B and D of Figure 5 suggest that the predictive power is asymmetric and mainly
stems from shocks in the high-stress regime; this observation is consistent with previous work on the
impact of financial shocks on real outputs in times of stress compared to normal times (Holló, Kremer,
and Lo Duca 2012; Hubrich and Tetlow 2015; Alessandri and Mumtaz 2019).

16 The 10-year euro government bond yields are derived from FRED St. Louis, the 3-month EURIBOR from the ECB, the
overnight rate—the €uro short-term rate and its predecessor EONIA—from the ECB, and realized inflation is measured us-
ing the core consumer price index less food and energy from Eurostat.
17 The results remain qualitatively unchanged if, for example, we use the unconditional mean of the low-stress state instead.
18 The fluctuations around the COVID-19 pandemic can be interpreted as outliers. Another approach for dealing with these
observations could be to ‘de-COVID’ the data using the approach of Ng (2021). As we do not see this as the main application
of EDI, we keep this avenue open for future research.
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Figure 5. Local Projections

Notes for the figure. This figure shows the impulse responses according to Eqs. (28) and (29) using the local projection tech-
nique proposed in Jordà (2005). In each panel, the dependent variable yt+h is the h-month ahead macroeconomic variable
(i.e., industrial production and unemployment rate). In Panels A and C we show the impulse responses for the entire sample
and in Panels B and Dwe show the impulse responses separately for low and high-stress states using an indicator variable. The
reported coefficients are standardized (solid line). Dotted and dashed shaded areas indicate 95% confidence intervals using
Newey-West (1987) standard errors.

5 Conclusion

In this paper, we attempt to take a holistic approach to systemic risk and real-time monitoring of the
state of the economy. At the sectoral level, we document that sectoral vulnerabilities, as measured
by distance-to-defaults, have moved sharply around key events, that volatility is the most important
driver of sectoral vulnerabilities in our setting, and that the pass-through of policy rates has important
implications for the financial health of economic sectors. Armedwith these insights, we have introduced
a new Economic Distress Index (EDI) that incorporates information from all economic sectors as a device
for real-timemonitoring of the state of the economy in the euro area. The EDI is significantly elevated or
downward sloping around key events, monetary financial institutions contribute most to the EDI over
the entire sample period, and non-bank financial intermediaries contribute particularly strongly in the
aftermath of the Global Financial Crisis since 2010. Themain application of the newly constructed index
is the real-time monitoring of the state of the economy, but it also shows significant predictive power
for macroeconomic developments arising mainly from high-stress regimes.
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