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ABSTRACT 

This paper develops an early warning system for predicting distress 
for large European banks. Using a novel definition of distress derived 
from banks’ headroom above regulatory requirements, we 
investigate the performance of three machine learning techniques 
against the traditional logistic model. We find that the random forest 
model shows superior performance both out-of-sample and out-of-
time. Unlike previous studies, we also employ a series of sampling 
techniques showing that they significantly improve the ability to 
identify distress events irrespective of the model used. Moreover, we 
show that ensemble techniques can help improve performance 
relative to the single best performing model. Finally, using the latest 
machine learning interpretability tools, we show that the variables 
closely tied to bank profitability and solvency are important drivers 
for predicting bank distress. Overall, our paper has important 
practical implications for bank supervisors and macroprudential 
authorities who can utilise our findings to identify bank weaknesses 
ahead of time and adopt pre-emptive measures to safeguard 
financial stability. 
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1. Introduction 

The primary objective of banking supervision is to safeguard the stability of the banking system and protect 
depositors from bank failure. This pivotal role requires a comprehensive evaluation of banks' capacity to 
withstand future adverse economic developments and shocks. This evaluation extends beyond a current point-
in-time assessment, including a forward-looking perspective on banks’ future sustainability.  
 
To accomplish this task, supervisory authorities often deploy early warning systems designed to identify in 
advance banks that are prone to face financial difficulties in the future. The results of this analysis can serve as 
the foundation for implementing targeted measures and corrective actions to strengthen banks’ resilience to 
financial distress. These proactive interventions can prevent banks of facing vulnerabilities in the first place, 
enhancing the resilience of the financial sector overall. 
 
In recent years, early warning systems have also proved to be useful tools beyond micro-prudential supervision. 
Detken et al. (2014) use early warning models to identify leading indicators that can be helpful in guiding 
macroprudential authorities on the activation and release of the countercyclical capital buffer (CCyB). In addition, 
Lo Duca & Peltonen (2013), Aldasoro, Borio, & Drehmann (2018) and Tölö (2020) rely on early warning indicators 
to predict systemic banking crisis or recessions, while Lang, Peltonen, & Sarlin (2018) illustrate how the 
traditional bank-level early warning systems can support both micro- and macro-prudential policy analysis. 
 
Traditionally, logistic regression models have been used in designing early warning systems. Various academic 
papers found that machine learning approaches are superior to traditional techniques, which are unable to deal 
with the complexities and non-linearities that exist in the underlying relationships. Suss & Treitel (2019) for 
example, compared the performance of six different approaches for predicting distress of UK banks: two logistic 
regression models and four machine learning approaches – K-Nearest Neighbours (KNN), Random Forest, 
Boosting, and Support Vector Machines (SVM). The results show that machine learning approaches, in particular 
the Random Forest algorithm significantly and substantively outperform traditional techniques. They also 
demonstrate the benefits of ensemble techniques and find that a stacked ensemble using a linear regression as 
the second-level model provides better results than the Random Forest alone. 
 
Similarly, Le & Viviani (2018) assessed various traditional statistical techniques and machine learning techniques 
to predict bank failures in the US. They found that machine-learning techniques are more accurate than 
traditional techniques, and in particular Artificial Neural Networks and K-Nearest Neighbour methods. They do 
not, however, assess the Random Forest algorithm. Petropoulos, Siakoulis, Stavroulakis, & Vlachogiannakis 
(2020) also applied machine learning modelling techniques to predict bank insolvencies of US-based financial 
institutions, with their results confirming that the method of Random Forests has a superior performance when 
compared with other techniques like logistic regression, linear discriminant analysis, Support Vector Machines 
or Artificial Neural Networks. 
 
Building on the existing academic literature, our paper develops an early warning system to predict distress for 
large banks in the EU using machine learning techniques. Our work contributes to the literature in several ways. 
First, we make use of a unique and comprehensive supervisory dataset for a sample of large EU banks between 
2017 - 2023. Previous studies have mainly focused on US or UK banks or small EU banks. Part of the reason is 
that outright failures of large EU banks do not happen often, making the estimation of early warning systems 
particularly challenging. To overcome this problem, we use a novel approach in defining bank distress events, 
which is directly aligned with the supervisory risk assessment framework. In addition, we utilise sampling 
techniques to account for the imbalance between distress and non-distress events, improving the model’s 
performance, particularly for predicting distress events. 
 
We compare four distinct early warning systems employing Random Forest, Logistic Regression, Neural Network, 
Decision Tree models to forecast bank distress. Our analysis reveals that the Random Forest model consistently 
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outperforms the other approaches both out of sample and out of time, particularly in its capacity to identify 
distress events. Unlike previous studies, we also employ a series of sampling techniques showing that they 
significantly improve the ability to identify distress events irrespective of the model used. The most influential 
variables, as determined by Shapley values, are closely tied to bank profitability, including average interest 
expense of deposits and asset-deposit spread for non-financial corporations, as well as solvency indicators such 
as equity to total liabilities and equity. We also show that ensemble techniques can sometimes perform better 
than the single best performing model. Our findings are robust across various prediction horizons and alternative 
definitions of distress, providing valuable insights for the development of effective early warning systems in the 
banking sector. 
 
The rest of the paper is organised as follows. Section 2 describes the data used for the construction of the bank 
distress events and the explanatory variables. Section 3 describes the different machine learning models 
employed in the paper. Section 4 presents the results and robustness tests. Section 5 concludes the paper. 
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2. Data 

2.1. Sample 

Our sample covers 176 banks from 27 EEA countries which reported supervisory data at the highest level of 

EU/EEA consolidation from 2017 Q1 to 2023 Q3 (Table 10 in the Annex).1 The data period includes the COVID 

pandemic, which triggered a sharp economic shock in 2020 followed by a rebound in 2021 and 2022. For the 
banking sector, the impact was less severe due to the introduction of various public support measures and 

European banks have reported solid profitability and strong solvency positions throughout that period.2 We 

exclude data for public banks, United Kingdom’s (UK) banks and banks with data of insufficient quality.3  

While the EBA started to collect supervisory data for all banks in the EU/EEA from 2020 Q4 as part of EUCLID, it 

still does not collect balance-sheet and income-statement data for most of the medium-sized and small banks.4 

Therefore, we restrict our sample to the largest banks in the EU/EEA, given that we are not able to construct 
most of the explanatory variables used in our models for the remaining banks (see section 3.3 for details). 

2.2. Distress events 

Traditionally, early warning systems use outright failures (e.g. insolvencies, bankruptcies, liquidations and 
defaults) to represent distress. However, these distress events are rare among large banks, making the 
estimation of early warning systems in the banking sector particularly challenging. To overcome this problem, 
several authors have relaxed the traditional notion of distress and instead used an ‘extended’ definition, which 
encompasses a wider range of distress episodes beyond outright failures. 

Betz, Oprică, Peltonen, & Sarlin (2014) take into account state interventions and forced mergers to capture bank 
distress for large European banks. Suss & Treitel (2019) make use of confidential supervisory assessments on the 
riskiness of UK banks and building societies between 2006 and 2012. They classify banks in distress as those that 
have received a ‘high risk’ score by bank supervisors. Moreover, Ferriani et al. (2019) identify distress events on 
the basis of the Italian regulatory framework using information on compulsory administrative liquidation, 
extraordinary administration, temporary administration voluntary liquidation, merger in distress, disposal of 
assets, resolution, intervention of the depositors’ guarantee funds, and notification of financial deterioration to 
the ECB. Similarly, Bräuning, Malikkidou, Scalone, & Scricco (2020) use a series of early warning events prescribed 
in the European Bank Recovery and Resolution Directive, in short BRRD (EU, 2014b). These include failing or likely 
to fail triggers (Article 32 of the BRRD), early intervention triggers (Article 27 of the BRRD), special or temporary 

administration and notifications of financial deterioration to the ECB.5  

 
1 While supervisory reporting started in 2014 Q1, we restrict our sample to the period after 2017 Q1 as some of the main 
variables used to construct the distress events were only available after this date.  
2 As a robustness check, we carry out the analysis by excluding the Covid period between 2020 Q1-Q3 and the results are 
qualitatively similar. The results are not presented in the paper for the sake of brevity. 
3 Following the UK’s departure from the EU, supervisory reporting data for banks domiciled in the UK are no longer 
collected by the EBA as of 2020 Q2. 
4 
https://www.eba.europa.eu/sites/default/documents/files/document_library/News%20and%20Press/Communication%20
materials/Factsheets/1025098/Factsheet%20on%20EUCLID.pdf  
5 For more details on the failing or likely to fail triggers and early intervention triggers see the EBA guidelines on failing or 
likely to fail (EBA/GL/2015/07) and EBA guidelines on early intervention triggers (EBA/GL/2015/03) 

https://www.eba.europa.eu/sites/default/documents/files/document_library/News%20and%20Press/Communication%20materials/Factsheets/1025098/Factsheet%20on%20EUCLID.pdf
https://www.eba.europa.eu/sites/default/documents/files/document_library/News%20and%20Press/Communication%20materials/Factsheets/1025098/Factsheet%20on%20EUCLID.pdf
https://www.eba.europa.eu/sites/default/documents/files/documents/10180/1085517/02539533-27ed-4467-b442-7d2fa6fcb3d3/EBA-GL-2015-07%20GL%20on%20failing%20or%20likely%20to%20fail.pdf?retry=1
https://www.eba.europa.eu/sites/default/documents/files/documents/10180/1085517/02539533-27ed-4467-b442-7d2fa6fcb3d3/EBA-GL-2015-07%20GL%20on%20failing%20or%20likely%20to%20fail.pdf?retry=1
https://www.eba.europa.eu/sites/default/documents/files/documents/10180/1067473/f6234078-a8cb-40a1-88f1-f22d446ca394/EBA-GL-2015-03%20Guidelines%20on%20Early%20Intervention%20Triggers.pdf?retry=1
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In this paper we adopt a new definition of distress, which aims to capture “weak” banks that merit higher 
supervisory attention. By doing so, we can build an early warning system which identifies weak banks at an early 
stage and provides enough time for supervisors to intervene. This is particularly useful for supervisors who are 
often interested in early signs of distress, rather than outright bank failures.  

The Basel Committee on Banking Supervision defines a weak bank as one “whose liquidity or solvency is impaired 
or will soon be impaired unless there is a major improvement in its financial resources, risk profile, business 
model, risk management systems and controls, and/or quality of governance and management in a timely 
manner” (BCBS, 2015).6 Drawing upon this definition, we consider a bank to be “weak” if any of the following 
conditions is met: 

▪ Common Equity Tier 1 (CET1) ratio breaches an early warning threshold. 

▪ Leverage ratio (LR) breaches an early warning threshold. 

▪ Liquidity Coverage ratio (LCR) breaches an early warning threshold. 

Supervisors often use these metrics to impose intervention measures on banks when they drop below a 
minimum level. As such, modelling distress based on these metrics will provide supervisors with a practical tool 
that is directly aligned with their risk assessment framework. 

To construct the distress events, we rely on quarterly supervisory data available to the EBA. We consider a 
distress event to start when an early warning threshold is breached and to end when the threshold is no longer 
breached (or an actual bank failure occurs, and the bank exits the sample). In our analysis, we assess different 
early warning threshold levels motivated by the solvency and liquidity requirements set in the European banking 
regulation, as presented in the next section. 

CET1 ratio 

The CET1 ratio was introduced after the financial crisis that started in 2008 as one of the main measures of a 
bank’s capacity to absorb unexpected losses. It measures a bank’s CET1 capital against its risk weighted assets. 
CET1 capital mostly consists of a bank’s share capital, reserves and retained earnings and as such is the highest 
quality of capital for loss absorption purposes. In the EU, the CRD IV package − comprising the Capital 
Requirements Regulation (CRR) and the Capital Requirements Directive (CRD) − and competent authorities via 
the Supervisory Review and Evaluation Process (SREP) determine the level of capital (for each layer separately) 
banks are required to hold (EBA, 2022; EU, 2013a; EU, 2013b). This is called the ‘own funds requirement’ and is 
usually expressed as a percentage of risk weighted assets.  

Figure 1 presents the stacking order of own funds requirements and Pillar 2 Guidance (P2G). Pillar 1 requirements 
are the minimum capital requirements applicable to all banks. They ensure that banks hold enough capital to 
cover for unexpected losses related to credit, market and operational risks. Their level, as set in the CRR, stands 
at 4.5%, 6% and 8% for the CET1, Tier 1 and Total capital ratio. Pillar 2 requirements (P2R) are additional bank-
specific capital requirements, applied on top of the minimum Pillar 1 requirements, which aim to cover risks that 
are underestimated or not covered by the minimum Pillar 1 requirements. The level of the P2R is set by the 

competent authority as part of the SREP and is bank-specific.7 Pillar 1 requirements and P2R, together known as 

the Total SREP Capital Requirement (TSCR), are legally binding and should be met at all times. Any breach of the 
TSCR can have direct legal consequences for banks, including a potential withdrawal of authorisation (Article 48 
of CRD). 

 
6 BCBS (2015) Guidelines for identifying and dealing with weak banks  
7 Under the new Capital Requirements Directive V (CRDV), which came into effect in January 2021, banks can fulfil P2R with 
a minimum 56.25% CET1 capital (EU, 2019a) (EU, 2019b). The remaining P2R can be filled with Additional Tier 1 and Tier 2 
capital.  

https://www.bis.org/bcbs/publ/d330.pdf
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In addition to the TSCR, banks are subject to several capital buffers of a macroprudential nature. These include 
the capital conservation buffer (CCB), the countercyclical buffer (CCyB), the systemic risk buffer (SyRB) and 
buffers for global (G-SII) and other systematically important institution (O-SII), together constituting the 
combined capital buffer requirement (CBR). The level of these buffers is either directly determined in the 
regulatory framework (e.g. 2.5% for the capital conservation buffer) or set individually by national 
macroprudential authorities and should be met fully in CET1 capital. The buffer framework is designed in such a 
way so that banks can operate below the CBR when needed (e.g. in a period of stress) subject to automatic 

restrictions on distributions.8,9 In practise, banks must calculate the Maximum Distributable Amount (MDA) as 

soon as they fail to meet the Overall Capital Requirement (OCR) − the sum of Pillar 1 requirements, P2R and CBR. 

Finally, as part of the SREP, competent authorities can set a Pillar 2 Guidance that sits on top of the CBR and acts 
as additional buffer of protection against losses from adverse scenarios. This is not a legally binding requirement 
but rather a supervisory expectation/recommendation of the adequate levels of capital a bank must have to be 
sufficiently protected during stressed conditions. Therefore, if a bank’s capital falls below the P2G level, it would 
not trigger any automatic supervisory action neither would lead to any restrictions on the distributable amount. 
P2G is expected to be fully met with CET1 capital. 

While banks should meet different capital requirements for each layer of capital, in this paper we make use only 
of the CET1 ratio requirements to determine our distress events. CET1 capital is not just the highest quality of 
capital but also the most expensive form of capital from a bank’s point of view. Banks usually focus on managing 
their CET1 capital levels and set a CET1 capital target to maintain an additional capital buffer above capital 
requirements. At the same time, they are reluctant to hold excessive CET1 capital above capital requirements 
since this is too costly.  

Figure 1: Stacking order of own funds requirements and P2G 

 
Note: The scale is not meaningful/indicative only. 

Figure 2 shows the distribution of the CET1 ratio (fully loaded) over time and the number of related distress 
events using different early warning threshold levels. Over the last years, European banks have continuously 

 
8 Banks are required to rebuild their capital levels in a timely manner when operating within the buffer range. 
9 The restrictions cover dividend payments, payments on variable remuneration and payments on Additional Tier 1 (AT1) 
instruments. 
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increased their CET1 ratios (fully loaded), starting from 14.9% in 2017 and reaching 16.6% in 2023. This significant 
improvement was primarily driven by an increase in capital sources, most notably retained earnings, but was 
also supported by banks’ de-leveraging and de-risking. 

The early warning threshold levels are measured in terms of percentage points (p.p.) in excess of the OCR and 
P2G. For example, an early warning threshold level of 0.5 p.p. counts the number of banks that have a CET1 ratio, 
which is not higher than 0.5 p.p. above their OCR and P2G level. Our choice of the early warning threshold relative 
to the OCR and P2G was based on the fact that supervisors and market participants expect banks to keep a 
certain level of excess capital to manage fluctuations while complying with requirements and supervisory 

expectations at all times.10  Therefore, banks who are closer to breaching this level are likely to receive higher 

supervisory attention and can be considered weak(er) relative to the rest of the banks. We chose the threshold 
level at 0.5 p.p. above OCR and P2G based on the 5th percentile of banks’ actual CET1 ratio buffer in the period 
2017 Q1 to 2023 Q3 (0.49 p.p.), which leads to 166 distress events during that period.  

Figure 2: CET1 ratio (fully loaded) - Distribution (left) and number of distress events using alternative early 

warning threshold levels (right) 

Distribution of CET1 ratio Number of distress events 

  

Source: EBA supervisory data and EBA calculations. 

Notes: For the quarters between March 2017 and September 2018, the capital requirements as of December 2018 has 
been used as a proxy due to unavailability of data. Data for 2023 covers only the first three quarters of the year. 

Leverage ratio 

The leverage ratio captures the relation between a bank’s capital and its assets, irrespective of how risky those 
are.  It has been introduced in EU banking regulation to act as a backstop to risk-based capital requirements by 
constraining the building up of excessive leverage during economic upturns.  

 
10 On 12 March 2020, the ECB announced that it would allow banks to operate temporarily below the level of capital 
defined by P2G as part of the relief measures in reaction to coronavirus: 
https://www.bankingsupervision.europa.eu/press/pr/date/2020/html/ssm.pr200312~43351ac3ac.en.html 
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A bank’s leverage ratio is calculated as a bank’s Tier 1 capital divided by its total leverage ratio exposure measure, 
which includes its assets and off-balance-sheet items. The CRR introduced a uniform definition for leverage ratio, 
which was later amended to align it with the revised international standards on the leverage ratio, published in 
December 2017 by the BCBS (BCBS, 2017).  

While the minimum leverage ratio requirement of 3% has been applicable since June 2021, we treat it as binding 
from 2017 for the purposes of our analysis. We consider this assumption reasonable, given that banks had to 
report and publicly disclose the ratio from as early as 2016; hence it is likely that they had frontloaded the 
leverage requirement before its actual application date.  Figure 3 shows the distribution of the leverage ratio 
over time and the number of related distress events using different early warning threshold levels. As can be 
seen, banks reported ratios well above the minimum requirement since 2017 confirming that banks frontloaded 
the leverage requirement. As of September 2023, the average leverage ratio stood at 6.3%. With ratios generally 
on the rise between 2017 and 2021, the number of distress events declined over the same period and increased 
in 2022. 

Similar to the rationale behind the CET1 threshold, our choice reflects banks’ need to operate above minimum 
requirements at all times while providing a signal to supervisors regarding banks that might operate too close to 
those requirements. Our chosen threshold level of 1 p.p. is close to the 5th percentile of banks’ actual leverage 
ratio buffer in the period 2017 Q1 to 2023 Q3 (0.95 p.p.) and leads to 186 distress events during that period. 

Figure 3: Leverage ratio (fully loaded) – Distribution (left) and number of distress events using alternative early 

warning threshold levels (right) 

Distribution of leverage ratio Number of distress events  

  

Source: EBA supervisory data and EBA calculations. 

Notes: Data for 2023 covers only the first three quarters of the year. 

Liquidity coverage ratio 
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gravely stressed conditions over a period of thirty days. In October 2014, the European Commission adopted a 
Delegated Act on the Liquidity Coverage Ratio (LCR), specifying in detail how to apply the liquidity coverage 
requirement (EU, 2014a). The LCR is defined as the stock of high-quality liquid assets (HQLAs) over the net 
liquidity outflows arising during a 30-calendar-day stress period. It was introduced on 1 October 2015, with a 
minimum requirement set at 60%, which was gradually phased-in to reach 100% on 1 January 2018. Given the 
long monitoring period that preceded the phase-in, banks generally complied with the final requirements already 
in 2017. We therefore used the fully-loaded LCR requirement for the entire period studied. 

Figure 3 shows the number of distress events based on the LCR using different early warning threshold levels. 
Supervisory data on the LCR (based on the Commission’s Delegated Act definition) became available from 2016 
Q3 and stood at 158.6% in 2017 for the median bank. Driven by public measures, including central bank liquidity 
support, the LCR increased in the years leading to 2021. In 2023, and due to the phasing out of support measures, 
the LCR declined to reach an average of 184.5% in September 2023. The 5th percentile LCR buffer of 25 p.p. 
above requirements matches with our chosen threshold of 25 p.p. With this choice, we observe 159 distress 
events during the period 2017 Q1 to 2023 Q3. 

Figure 4: Liquidity coverage ratio - Distribution (left) and number of distress events using alternative early 

warning thresholds (right) 

Distribution of LCR Number of distress events 

  

Source: EBA supervisory data and EBA calculations. 

Notes: Data for 2023 covers only the first three quarters of the year. 

Total distress events 

Table 1 illustrates the number of distress events per category using the aforementioned early warning threshold 
levels. In total, there are 455 distress events, accounting for around 14% of the total observations. The distress 
events are spread almost equally across the categories. The occurrence of distress events is not mutually 
exclusive across the categories (i.e. a bank may breach multiple early warning thresholds in the same quarter). 
Hence, the categories do not sum up to the total. In addition, the number of distress events exceeds the number 
of banks, as a distress event is identified at the bank-quarter level and the same bank can be in distress in multiple 
quarters.  
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Table 1: Number of distress events by category 

 

Source: EBA supervisory data and EBA calculations.  

Notes: The statistics are derived from a sample of 176 banks with 3298 observations over the period of 2017Q1 to 2023Q3. 
Probability is calculated as the ratio of the number of distress events by the total number of observations. The total number 
of distress events does not sum up to the individual categories because they are not mutually exclusive. 

2.3. Explanatory variables 

The existing literature mainly relies on CAMELS indicators to capture bank’s vulnerability to distress. These 

include measures of capital adequacy, asset quality, management, earnings, liquidity and sensitivity to market 

risk. However, there is inconclusive evidence and an ongoing debate in the current literature regarding the level 

of significance of the explanatory variables used in predicting bank failures. Depending on the models and time 

horizons used, different variables tend to be more significant in predicting bank failures or distress events. 

Petropoulos, Siakoulis, Stavroulakis, & Vlachogiannakis (2020) assessed the importance of each variable used as 

input for each model in their study. They found that for most models, profitability and capital indicators were 

the most important drivers across all models. Cost of Funding Earnings Assets (CFEA) and leverage ratio (LEV) 

were identified to be leading indicators in bank failure forecasting. In addition to CFEA, earnings related 

indicators such as Return on Equity were also identified as important determinants. On the other hand, Loan loss 

allowance to non-performing loans and non-performing loans to loans appear to be the ones with the lower 

importance across all models. Furthermore, Liquidity risk as measured by the Net Loans to Core Deposits and 

Asset Quality as measured by the distance from the sector of Loss allowance to loans were found to have 

increased significance in the Support Vector Machine (SVM) and Neural Network (NN) models.  

Le & Viviani (2018) observed that three groups of variables play a more important role in predicting bank failures, 

namely operation efficiency, profitability and liquidity. Variables that were found to be more relevant than others 

were Impaired Loans to Gross Loans, Tier 1 capital ratio, Capital funds to Total assets, Other Operation Income 

to Average Assets, Net interest revenue to Average Assets, Non Operation Items and taxes to Average Assets, 

Return on Average Assets, Cost to income ratio, Net Loans to Total Asset, Net loans to Deposit  and Short Term 

funding and Net Loans to Total Deposit and Borrowing. 

Gogas, Papadimitriou, & Agrapetidou (2018) found two variables that provided the highest forecasting accuracy 

for the model they studied with a 1-year forecasting horizon. These are Tier 1 capital over total assets and total 

interest expense over total interest income. When adapting the model to a two-year forecasting horizon, the 

following variables turned out to be most predictive: Tier 1 to Total assets, Provision for loan losses to Total 

Distress category Frequency Probability (%) 

CET1 ratio  

(0.5% headroom) 
166 5.0 

Leverage ratio  

(1% headroom) 
186 5.7 

Liquidity Coverage Ratio  

(25% headroom) 
159 4.9 

Total 455 13.8 
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interest income, Loan loss allowance to Total assets and Volatile liabilities to Total assets. When applying a three-

year forecasting horizon, the Tier 1 to Total assets, Loan loss allowance to Total assets and Total interest expense 

to Total interest income ratios proofed best suited. 

Suss & Treitel (2019) found that lagged macroeconomic variables were very important for predicting distress of 

UK banks. For the random forest model, a measure of average real UK earnings was the single most important 

variable. As regards bank-specific financial ratios, they identified the ratio of trading book to total assets, capital 

buffer, and net interest margin to be the most predictive variables. 

Betz et al. (2014) complemented bank-specific vulnerabilities with indicators for macro-financial imbalances and 

banking sector vulnerabilities. In their view, this improves model performance and yields useful out-of-sample 

predictions of bank distress. 

In our model, and in line with previous research, we use two types of indicators to capture early signals of a 

bank’s vulnerability to distress. These include: 

▪ bank-specific indicators; 

▪ country-specific macro-financial indicators. 

Bank-specific indicators 

Building on the existing literature, we use a comprehensive list of indicators that reflect a bank’s main risks and 
balance sheet structure. The indicators are computed from the list of EBA Risk Indicators using quarterly 
supervisory data. The EBA Risk Indicators capture a range of risk dimensions: liquidity, funding, asset quality, 
profitability, concentration risk, solvency, operational risk, market risk, SME, sovereign risk. The indicators 
resemble traditional proxies for the CAMELS rating system (i.e. Capital Adequacy, Asset Quality, Management, 

Earnings, Liquidity, and Sensitivity to market risk). 11 

Country-specific macro-financial indicators 

In addition to the above bank-specific variables, we consider a range of country-specific macro-financial 
indicators retrieved from Eurostat, ECB Statistical Data Warehouse and Bloomberg. These include GDP growth, 
inflation rate, unemployment rate, Government debt-to-GDP, Residential Real estate index, cost of borrowing 
for households and corporations, long term interest rates and sovereign yields. 

Changes in variables over time 

In addition to point-in-time readings for both bank-specific and macro-financial indicators, we also use the 
quarter-over-quarter change and year-over-year change of all our indicators. This allows us to capture changes 
or shifts in an indicator over time in predicting distress. For example, a significant shift in a bank’s reliance on 
client deposits could signal an increase in liquidity risk. 

Prediction horizon  

For each of the above bank-specific and macro-financial indicators (including the transformation of the indicators 
over time), we create lagged variables on a quarterly basis starting from 1 to 8 quarters (i.e. 2 years). We treat 
all the variables of the same indicator but different lag structure as separate predictors in our model. 

 
11 For a full list of the EBA Risk indicators and their description, see https://www.eba.europa.eu/risk-analysis-and-
data/guides-on-data 

https://www.eba.europa.eu/risk-analysis-and-data/guides-on-data
https://www.eba.europa.eu/risk-analysis-and-data/guides-on-data
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For our model specification, we only include predictors that are lagged by 4 up to 8 quarters relative to the 
dependent variable, i.e. we apply a 1-year prediction horizon as a minimum for our model. We do so, given that 
the purpose of our model is to detect possible distress events well in advance. In this way, supervisors will have 
enough time to take action aimed at preventing or mitigating negative consequences of distress or potential 
bank failure. Depending on the supervisory approach chosen by the relevant authorities that wish to use our 
model, the prediction horizon can be adjusted. We test our model’s performance under various prediction 
horizons as a robustness check (see section 4.3).  
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3. Methodology 

3.1. Pre-processing 

Data splitting 

Before building our models, we split the full dataset into three parts (Figure 5):  

▪ the full in-time dataset that covers the period between 2017 Q1 – 2022 Q2 and is divided into two sub-

parts using a randomly stratified sampling technique12 : 

a) the in-time training dataset consisting of 80% of the total observations; and  

b) the in-time test dataset consisting of the remaining 20% of the observations; 

▪ the out-of-time dataset that comprises data between 2022 Q3 – 2023 Q3. 

Figure 5 Training, validation and test datasets 

 

The in-time training dataset is used to train and develop the model. During the development of our model, the 
training dataset is further divided in k subsets called “folds”. The model is then trained on a combination of k-1 
folds and tested on the remaining fold, often referred to as the validation set. This technique is commonly used 
in machine learning to fine-tune and select the optimal model parameters and hyperparameters, such as the 
number of layers in neural network models (for more information on parameters and hyperparameters see 

section 3.2). This helps optimizing the model’s performance, while preventing overfitting. 13  

 
12 The technique ensures that proportion of distress and non-distress events are preserved in our training and test datasets. 
13 Overfitting is a common problem in machine learning, where the model “memorizes” the training set and their 
corresponding labels instead of learning the true underlying relationships in the data. When this occurs, the model usually 
gives very accurate predictions for the training data but not for new data.  
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We select k=5 for the number of folds, in other words we use a 5-fold cross-validation. This is a common choice 

for k among practitioners and suits better to the size of our dataset which is relatively small.14 To reduce the 

impact of the random partitioning of the data when dividing into folds, we use repeated k-fold cross validation, 
where the entire k-fold cross validation process is repeated multiple times, with different random partitions each 
time. The model is then assessed using averages of the performance metrics across all partitions and repeats. 
This technique is particularly useful when working with smaller datasets as it provides a more robust evaluation 
of the model’s performance, independent of any specific partitioning. 

The in-time test data is used to evaluate the performance of the trained model. By evaluating our model on 
unseen data, we can assess its ability to generalize and make accurate predictions. In this way, we mitigate the 
problem overfitting where the model performs very well on our existing data, but fails to generalize on new, 
unseen data. 

The out-of-time test dataset assesses the performance of the trained model during a different (future) time 
period. Using an out-of-time dataset can help identify if the model is robust to changes and variation that might 
occur over time. It also helps assess the model under a real-world scenario, where supervisors will use the trained 
model to predict future distress events.  

Feature selection procedure 

Before training our models, we employ a feature selection procedure to reduce the number of explanatory 
variables ─ often called features in machine learning ─ that will go into our models (Figure 6). The technique has 
multiple benefits as outlined in the past literature by Kuhn & Jonson (2019), Li, et al. (2017), Murphy (2012) and 
Sarkar, Bali, & Sharma (2017). First, it ensures that only the most relevant and informative features are selected 
for training the model. Second, it reduces model complexity and enhances interpretability. Finally, it makes the 
training process faster and more efficient.  To avoid any leakages between our training and testing datasets, we 
carry out the feature selection procedure only on the training dataset rather than the full dataset. 

We start with an initial set of 7,058 potential predictors. As a first step in our feature selection procedure, we 
exclude 5,864 variables with poor coverage, which have more than 15% of the values missing. Secondly, we 

exclude 12 variables which have near zero variation.15 Thirdly, we exclude variables that are considered irrelevant 

or redundant. In particular, we employ a range of filter techniques and rank the variables based on their 

importance.16 We then exclude 1,017 variables that are not ranked among the top 100 important variables in 

any of these techniques. As filter techniques, we use the correlation with the dependent variable, the 
information value with respect to the dependent variable, the information gain with respect to the dependent 
variable and the area under the ROC curve for each feature. Finally, we exclude 159 variables that exhibit pair-

wise correlation of more than 0.7.17 We end up with a final set of 33 number of features to train our model. 

 
14 Other common choices are k=10.  
15 We use the “nearZeroVar” function in R. The function diagnoses predictors that have one unique value (i.e. are zero 
variance predictors) or predictors that are have both of the following characteristics: they have very few unique values 
relative to the number of samples and the ratio of the frequency of the most common value to the frequency of the second 
most common value is large. 
16 There are generally 3 classes of feature selection methods for eliminating irrelevant and redundant features: filter 
methods, wrapper methods and embedded methods. We use filter methods because they are simple, computationally 
efficient and independent of a specific machine learning algorithm. These methods rely on a statistical measures or 
heuristic metrics, such as the correlation with the target variable, to rank and select the most relevant features.  
17 We use the function “findCorrelation” in R. The function searches through a correlation matrix and returns a vector of 
integers corresponding to columns to remove to reduce pair-wise correlations. If two variables have a high correlation, the 
function looks at the mean absolute correlation of each variable and removes the variable with the largest mean absolute 
correlation. 
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Figure 6 Feature selection procedure 

 
Note: The number of features excluded in each step is indicated in brackets. 

For modelling purposes, we only consider observations which have all the 33 predictors available (i.e. not 
missing), resulting in a total of N = 2,371 observations over 108 banks and 341 distress events. 

Selected features 

The final set of selected features covers a range of areas including asset quality, liquidity and funding, 
profitability, solvency (capital) as well as macroeconomic indicators (Table 11 in the Annex). Some indicators 
appear more than once due to multiple transformations of the same indicator we consider in our model. For 
example, the asset encumbrance ratio features in our model twice, both in its point-in-time version as well as in 
its year-over-year change. Table 12 and Figure 9 in the Annex show their summary statistics and variation across 
distress / non-distress events. 

Many of our selected features are commonly found as important drivers of bank distress in many studies in the 
field. Among the common indicators, those associated with solvency (capital), profitability, liquidity and funding 
appear in most studies. For example, variables such as return on equity/assets and the ratio of Tier 1 capital over 
total assets consistently rank among the most influential predictors of distress in many studies such as in Gogas, 
Papadimitriou, & Agrapetidou (2018), Cole & Wu (2018), Suss & Treitel (2019) and Petropoulos, Siakoulis, 
Stavroulakis, & Vlachogiannakis (2020).  

As regards liquidity and funding, we find that changes over time transformations of various indicators have a 
higher predictive power compared to their point-in-time readings. In addition, banks’ reliance on customer 
deposits and interest rates paid on customer deposits emerge as important features for our model. This likely 
reflects that many banks in our sample operate a business model with a focus on funding via deposits. 

In contrast to other studies, we also find that indicators linked to government indebtedness (as share of GDP) 
and banks’ share of exposures to governments over total assets as important variables for our model. This might 
reflect the sovereign-bank nexus that came to the fore during and after the sovereign debt crisis that took place 
in several European countries in the 2010s.  
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3.2. Model development 

In this paper, we apply selected machine learning techniques and compare their performance with traditional 
logistic regression models. We consider the following models which are described in more detail in the next 
sections: logistic regression, boosted decision tree (C5.0), random forest and neural networks (see Bishop, 2006; 
Murphy, 2012 for more information). 

Logistic regression 

Logistic regression is one of the most conventional methods for predicting distress. It relates the log-odds of 
distress to a linear combination of predictor variables.  The logistic function takes the form:  

log (
𝑃(𝑌 = 𝐷𝑖𝑠𝑡𝑟𝑒𝑠𝑠)

1 − 𝑃(𝑌 = 𝐷𝑖𝑠𝑡𝑟𝑒𝑠𝑠)
) =  𝛼 +  𝛽1𝑋1 + ⋯ + 𝛽𝑁𝑋𝑁 

where 𝛼 is the intercept term, 𝛽𝑖  is the coefficient or parameter associated with the predictor variable 𝑋𝑖  and 𝑋𝑖  
is a set of continuous or categorical variables.  

The coefficients are estimated through maximum likelihood estimation.18 The predicted probability of distress is 

estimated by the inverse logistic function:  

𝑃(𝑌 = 𝐷𝑖𝑠𝑡𝑟𝑒𝑠𝑠) =  
exp (𝛼 + 𝛽1𝑋1 + ⋯ + 𝛽𝑁𝑋𝑁)

1 + exp (𝛼 + 𝛽1𝑋1 + ⋯ + 𝛽𝑁𝑋𝑁)
 

Following the existing literature (e.g. Duca & Peltonen, 2013; Lang, Peltonen, & Sarlin, 2018), we employ a pooled 
logistic model. Pooled logistic models have been shown outperform on out-of-sample data (even though in-
sample performance is lower), which is the intention of our model, i.e. to predict future distress events (Fuertes 
& Kalotychou, 2017). 

Boosted decision trees 

A decision tree is a supervised machine learning algorithm that is widely used for both classification and 
regression problems. It creates a tree-like model that acts as a decision support tool (Figure 7). The tree consists 
of internal nodes (representing features or attributes), branches (representing decision rules), and leaf nodes 
(representing the predicted outcome or class label). Moving from the root to a leaf, one can visually understand 
how decisions are taken and what are their possible outcomes.  

 
18 We implemented logistic regression in R by using the ‘caret’ package. 
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Figure 7: Decision tree schematic 

 

Decision trees have several advantages, including their interpretability, their ability to visualise classification rules 
and their ability to handle missing values. However, they are prone to overfitting, they are generally sensitive to 
changes in the underlying training dataset, and they are less able to deal with complex relationships in the 
underlying data. Also, the tree can quickly become deep and complex making interpretability harder.  

To overcome these issues, we implement decision trees using the Quinlan C5.0 algorithm in R.19 The algorithm 

uses a boosting method to create a series of decision trees forming an ensemble.20 All trees (trials) in the 

ensemble are then combined to produce a final prediction. In this way, the model can make better and more 
robust predictions, reducing overfitting. 

As part of the modelling phase, we use grid search to tune three hyperparameters: the number of trees (trials) 
grown, the model type (model) and the winnowing parameter which controls whether a winnowing algorithm is 
applied to reduce the number of variables in the model (winnow). For trials we consider the values: 5, 10, 15. 
For model we consider the tree, the rules and their combination. For winnow, we consider both cases where the 
winnowing algorithm is applied and not applied.  

Random forest 

Random Forest is a widely used machine learning algorithm for modelling classification and regression problems 
(Breiman, 2001). It belongs to the family of ensemble algorithms that combine the predictions of multiple 
individual models to improve model performance and prediction accuracy. It consists of a collection of decision 
trees, with each tree trained on a random subset of the training data and a random subset of the features. When 
making predictions, each tree in the random forest produces its own prediction independently and the final 
prediction is determined by combining these individual predictions. For classification problems, the final 
prediction is determined by majority voting, i.e., the predicted class is the one that received the most votes 

 
19 For a literature review of Data Mining Algorithms see Wu et al. (2008). The relative R environment used in this paper 
refers to Kuhn et al. (2015). The algorithm uses an entropy-based approach to construct decision trees. It recursively splits 
the data based on features that maximize the information gain or minimize the entropy at each step. 
20 Boosting is a technique for generating and combining multiple classifiers to improve the predictive accuracy of the 
model. Instead of using a single tree, n separate decision trees (trials) are grown and combined to make predictions. The 
error rate of the boosted classifier is often substantially lower than that of single trees. 
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across all the trees. For regression problems, the prediction is usually the average or median prediction across 
all the trees.  

Random forests have several advantages. By combining the predictions of multiple trees, they can often achieve 
better performance compared to a single tree. They are robust to overfitting because of the randomness 
introduced when constructing of the trees. They can also handle large datasets with many features. While 
Random Forest and the C5.0 algorithm discussed above are both ensemble learning models that uses decision 
trees they differ in certain aspects. These include a) the way the trees are build, with random forest 
randomisation process ensuring a greater diversity among the trees; b) the variable selection process, with C5.0 
considering the importance of the variables based on their predictive performance while Random Forest selects 
the variables randomly; c) the way prediction are made, with the Random Forest aggregating predictions through 
majority voting, while C5.0 combines the predictions of the best individual trees (weighted voting). 

We tune two hyperparameters using grid search: the number randomly selected features used in each tree (mtry) 

and the number of trees to be grown (ntree). We consider the following possible values for mtry: 
1

2
√𝑚, √𝑚, 

2√𝑚 where 𝑚 is the number of the predictors fed into the model (Breiman, 2001). For ntree we consider the 
following possible values: 100, 250, 500.  

Neural networks 

Neural networks are advanced machine learning models inspired by the structure and functioning of the human 

brain. They are comprised of multiple nodes, or neurons, which are connected to one another forming a network. 

The nodes are organised into node layers, consisting of an unput layer, one or mode hidden layers and an output 

layer. The input layer receives the input data and passes them into the next layers. The hidden layers carry out 

complex calculations and pass them to the output layer which produces the final output (e.g. in the form of 

predictions). The nodes are the basic processing units of the network and each of them can be thought of as an 

individual model, composed of input data, weights, a bias (or threshold), and an output. The output of each node 

is passed through an activation function and if it exceeds a given threshold, it activates the node, passing data to 

the next layer in the network. The output of one node then becomes the input of the next node until the final 

output is obtained. 

Neural networks are highly flexible and can be applied to a wide range of tasks. They can capture complex non-

linear relationships in the data and are good in handling large datasets. They can also automatically learn which 

are the most useful features; hence data preprocessing and feature engineering is not as necessary. On the down 

side, neural networks are often seen as opaque and black box models. 

We construct a single layer perceptron neural network. We tune two hyperparameters using grid search: the 
number of hidden units (neurons) in the hidden layer of the neural network (size) and the regularisation 
parameter which helps avoid overfitting (decay). We consider the following possible values for ‘size’: 2, 5, 7, 10. 
For ‘decay’ we consider the following possible values: 0.001, 0.01, 0.1, with smaller values resulting in stronger 
regularization.  

Sampling techniques 

To deal with the fact that our dataset is highly imbalanced, i.e. the distress class is represented by significantly 
lower proportion relative to the non-distress class, we use a variety of sampling techniques before estimating 
the models: 

▪ Under sampling: randomly remove observations from the majority class (non-distress) from the training 
dataset 

▪ Over sampling: randomly replicate observations from the minority class (distress) and add to the training 
dataset. 
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▪ Synthetic Minority Over-sampling Technique (SMOTE): synthesize new observations from the minority 
instances and add to the training dataset. 

The above techniques aim to balance the class distribution, by either reducing the number of instances in the 
majority class (undersampling) or increasing the number of instances in the minority class (oversampling, SMOTE) 
of the training set.  In this way, we avoid building a biased model that performs poorly on the minority class 
(distress), which is the primary focus of the supervisors. 
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4. Results 

4.1. Model evaluation 

Performance metrics 

In this section, we compare the performance of the different models described above. To do so, we make use of 
several common evaluation metrics for classification problems. Most of them rely on the elements of the 
confusion matrix, a table that summarizes the performance of a classification model. It presents the counts of 
true positive (TP), true negative (TN), false positive (FP), and false negative (FN) predictions. In our study, the 
positive class corresponds to a distress event, while the negative class to a non-distress event. 

The matrix is constructed as follows: 

Table 2: Confusion matrix 

 

Prediction 

Positive 
(distress) 

Negative     
(non-distress)  

A
ct

u
al

 

Positive 
(distress) 

True positive 

(TP) 

False negative 

(FN) 

Negative      
(non-distress) 

False positive 

(FP) 

True negative 

(TN) 

The components of a confusion matrix are the following: 

▪ True Positives (TP): The number of instances that are correctly predicted as positive by the model. These 
are the cases where the model correctly identified distress events. 

▪ False Positives (FP): The number of instances that are incorrectly predicted as positive by the model. 
These are the cases where the model predicted a distress event, but the true class was actually non-
distress. Also known as a Type I error. 

▪ True Negatives (TN): The number of instances that are correctly predicted as negative by the model. 
These are the cases where the model correctly identified non-distress events.  

▪ False Negatives (FN): The number of instances that are incorrectly predicted as negative by the model. 
These are the cases where the model predicted a non-distress event, but the true class was actually 
distress. Also known as a Type II error. 

Table 3 summarises the performance metrics used in this paper to assess the performance of the above models. 
When building an early warning system, the supervisor is often faced with a trade-off between two types of 
errors: Type I errors (missing distress events) or Type II errors (issuing false alarms). We consider Type I errors to 
be more costly than Type II errors, based on the assumption that the supervisor has a stronger preference in 
correctly identifying as many actual distress events as possible rather than issuing a false alarm. While the latter 
has the risk of damaging the supervisor’s credibility, we consider this to be limited, because the early-warning 
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signal would act only as a trigger for a more in-depth analysis of the bank, which will give the supervisor the 
chance to assess if the signal is false.  

Therefore, we pay particular attention to how the model performs in terms of Recall / Sensitivity / True positive 
rate. Also, given that our dataset is highly imbalanced we interpret with caution the overall Accuracy of the 
model. Instead, we focus on Balanced Accuracy and Weighted Balanced Accuracy, particularly WBA2, weighted 
balance accuracy 2 (WBA2), which implicitly assigns a higher weight to Type I error (75%) than Type I error 

(25%).21  

Table 3 Summary of performance metrics 

Performance 
metric 

Description Formula 

Accuracy 
Measures the overall correctness of the 

model's predictions 

(TP +  TN) 

(TP +  TN +  FP +  FN)
 

Sensitivity / 

Recall / True 

positive rate 

Measures the proportion of correctly predicted 

positive instances out of all actual positive 

instances. Equals to 1 – Type I error 

TP  

(TP  +  FN)
 

Specificity / 

True negative 

rate / 

Negative 

prediction 

rate 

Measures proportion of correctly predicted 

negative instances out of all actual negative 

instances. Equals to 1 – Type II error 

TN  

(TN  +  FP)
 

Balanced 

Accuracy 

Measures the overall correctness of the 

model's predictions, taking into account the 

imbalance in the data 

0.5 ∗ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 0.5 ∗ 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 

Weighted 

Balanced 

Accuracy (1) 

Measures the weighted average balance 

accuracy that weights specificity more than 

sensitivity (75%/25%) 

0.25 ∗ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 0.75

∗ 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 

Weighted 

Balanced 

Accuracy (2) 

Measures the weighted average balance 

accuracy that weights specificity less than 

sensitivity (25%/75%) 

0.75 ∗ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 0.25

∗ 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 

AUC-ROC 

Measures the area under the Receiver 

Operating Characteristics (ROC) curve. The ROC 

curve is a graphical representation of the trade-

off between true positive rate and false 

Area under Receiver Operating 

Characteristics (ROC) curve 

 
21 Sensitivity = 1 – Type I error and Specificity = 1 – Type II error 
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Performance 
metric 

Description Formula 

positive rate for different classification 

thresholds 

Brier score 

Measures the mean squared difference 

between the predicted probability and the 

actual outcome across all instances  

𝐵𝑟𝑖𝑒𝑟 𝑠𝑐𝑜𝑟𝑒 =
1

𝑁
∑(𝑃𝑖 − 𝑂𝑖)

2

𝑁

𝑖=1

 

where 𝑁 is the total number of 

observations; 𝑃𝑖  is the predicted 

probability of distress for instance I; 𝑂𝑖  is 

the actual outcome for the i-th instance, 

where 1 indicates a distress and 0 

indicates a non-distress 

Effect of sampling techniques  

Table 4 and Table 5 presents the performance metrics for the various methods under different sampling 
techniques.  

For the logistic regression, the baseline model performs well in terms of accuracy but does a poor job in 
predicting distress events as showcased by the very low sensitivity. All sampling techniques perform similarly, 
leading to an improved sensitivity at the cost of lower specificity and overall accuracy. This is translated to lower 
values for WBA1 and higher values for WBA2 under all sampling techniques compared to the baseline. AUC ROC 
values are consistently high across all sampling techniques and close to the baseline. On the other hand, Brier 
Score is lowest for the baseline model, indicating better calibration of the predicted probabilities. 

For random forest, the baseline and oversampling lead to the highest accuracy, with SMOTE closely follows. 
However, all three methods show a very low Sensitivity. Undersampling improves Sensitivity significantly, while 
maintaining a good balance in Specificity, yielding the highest WBA2. Similarly with logistic regression, AUC ROC 
values are consistently high across all sampling techniques. Brier score is low and very similar for the baseline, 
oversampling and SMOTE, while is higher for undersampling technique. 

For decision tree, accuracy is the highest with oversampling. Sensitivity is relatively low for the baseline, 
oversampling and SMOTE and improves considerably with the undersampling technique. Specificity is 
consistently high across sampling methods, while slightly lower for the undersampling technique. WBA2 is the 
significantly higher for undersampling compared to other sampling techniques, while WBA1 is consistently high 
for all sampling techniques. AUC ROC does not change significantly across sampling techniques, while Brier score 
deteriorates with undersampling. 

For the neural networks, the baseline exhibits the highest accuracy followed closely by other sampling 
techniques. Sensitivity varies across sampling techniques, with undersampling and oversampling yielding a 
significant improvement relative to baseline although at the expense of lower specificity. WBA2 is the highest 
for oversampling followed closely by the undersampling method. As in other methods, AUC ROC remains high 
across all sampling techniques and Brier is lowest for the baseline model. 

Overall, the baseline models demonstrate good accuracy but have low sensitivity, indicating a potential issue in 
identifying distressed banks. Employing sampling techniques leads to a significant increase in sensitivity, 
suggesting an improved identification of distress banks, although at the cost of lower specificity. AUC ROC values 
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for all sampling techniques are close to the baseline, indicating good discrimination ability. Brier Score is usually 
lower for the baseline model compared to others, suggesting better calibration. 

As we are particularly interested in correctly predicting distress banks, we rely on Sensitivity as well as WBA2 to 
choose the preferred sampling technique. For logistic regression, the oversampling and SMOTE techniques 
produce the highest Sensitivity and WBA2, while for random forest and decision tree the undersampling 
technique.  For the neural network, WBA2 and Sensitivity is highest for oversampling, closely followed by 
undersampling. 

For consistency, we rely on a single sampling technique when comparing model performance across methods. 
We choose the undersampling technique, which appears to work well across models. In the remainder of the 
paper, we present the results based on the undersampling technique for all methods. 



 

 

Table 4 Validation results for logistic and random forest models across sampling techniques based on in-time test dataset 

Logistic Random forest 

Performance 
metric 

Baseline 
Under-

sampling 
Over-

sampling 
SMOTE 

Accuracy 0.8632 0.7447 0.7579 0.7579 

Sensitivity 0.3881 0.806 0.8209 0.8209 

Specificity 0.9649 0.7316 0.7444 0.7444 

Balanced 

Accuracy 
0.6765 0.7688 0.7827 0.7827 

WBA1 0.8207 0.7502 0.7635 0.7635 

WBA2 0.5323 0.7874 0.8018 0.8018 

AUC ROC 0.83 0.8299 0.8361 0.8331 

Brier score 0.1073 0.1784 0.1697 0.1684 
 

Performance 
metric 

Baselin
e 

Under-
sampling 

Over-
sampling 

SMOTE 

Accuracy 0.8737 0.8132 0.8895 0.8921 

Sensitivity 0.403 0.8806 0.5522 0.6716 

Specificity 0.9744 0.7987 0.9617 0.9393 

Balanced Accuracy 0.6887 0.8397 0.757 0.8055 

WBA1 0.8316 0.8192 0.8593 0.8724 

WBA2 0.5458 0.8601 0.6546 0.7386 

AUC ROC 0.9225 0.9046 0.9264 0.9273 

Brier score 0.0802 0.143 0.08 0.0848 
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Table 5 Validation results for decision tree and neural network models across sampling techniques based on in-time test dataset 

Decision tree (C5.0) Neural network 

Performance 
metric 

Baseline 
Under-

sampling 
Over-

sampling 
SMOTE 

Accuracy 0.8632 0.7974 0.8737 0.8605 

Sensitivity 0.5224 0.8358 0.4627 0.4478 

Specificity 0.9361 0.7891 0.9617 0.9489 

Balanced Accuracy 0.7292 0.8125 0.7122 0.6983 

WBA1 0.8327 0.8008 0.8369 0.8236 

WBA2 0.6258 0.8242 0.5874 0.573 

AUC ROC 0.902 0.878 0.8834 0.9015 

Brier score 0.0953 0.147 0.0918 0.0888 
 

Performance 
metric 

Baseline 
Under-

sampling 
Over-

sampling 
SMOTE 

Accuracy 0.8421 0.7342 0.7553 0.7974 

Sensitivity 0.4776 0.8209 0.8507 0.6119 

Specificity 0.9201 0.7157 0.7348 0.8371 

Balanced Accuracy 0.6989 0.7683 0.7928 0.7245 

WBA1 0.8095 0.742 0.7638 0.7808 

WBA2 0.5882 0.7946 0.8218 0.6682 

AUC ROC 0.8513 0.8494 0.8554 0.806 

Brier score 0.1213 0.198 0.1571 0.1712 
 

 

 



 

 

Model comparison 

We now evaluate the performance across our four methods —Logistic Regression, Random Forest, Decision Tree 
(C5.0 algorithm), and Neural Networks based on the under-sampling technique.  

We first focus on the predictive performance of each model on the in-sample test data (Table 6). Random Forest 
is the best performing model, demonstrating the highest AUC ROC (0.9064), Sensitivity (0.8806), Specificity 
(0.7987), leading to superior (weighted) balanced accuracies (WBA1, WBA2). It also has the best overall 
calibration of the fitted probabilities, having the lowest Brier score (0.143). Decision Trees follow closely, 
showcasing comparable results across various performance metrics. Logisitc regression and Neural Networks 
demonstrate satisfactory performance, although they exhibit slightly lower weighted balanced accuracies and 
AUC ROC.  

Turning to the out-of-time performance, presented in Table 7, Random forest provides again the best fit across 
most of the performance metrics. Logistic regression and Decision tress follow closely in terms of AUC ROC and 
Brier Score, but Neural networks are ranked as the second best method in terms of Sensitivity (0.7857) and WBA2 
(0.7864).   

Overall, random forest appears to be the best performing model in both the in-time test data and out-of-time 
test data. The remaining methods also demonstrate adequate performance. Decision tree and neural network 
appear to follow closely in terms of Sensitivity and WBA2, while logistic regression underperforms in these 
metrics. 

Table 6 Validation results for final models based on in-time test dataset 

 

Performance metric Logit Random forest Decision tree (C5.0) Neural network 

Accuracy 0.7447 0.8132 0.7974 0.7342 

Sensitivity 0.806 0.8806 0.8358 0.8209 

Specificity 0.7316 0.7987 0.7891 0.7157 

Balanced Accuracy 0.7688 0.8397 0.8125 0.7683 

WBA1 0.7502 0.8192 0.8008 0.742 

WBA2 0.7874 0.8601 0.8242 0.7946 

AUC ROC 0.8299 0.9046 0.878 0.8494 

Brier score 0.1784 0.143 0.147 0.198 

Table 7 Validation results for final models based on out-of-time test dataset 
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Performance metric Logit Random forest Decision tree (C5.0) Neural network 

Accuracy 0.8395 0.8884 0.8837 0.7884 

Sensitivity 0.7143 0.8571 0.7143 0.7857 

Specificity 0.8438 0.8894 0.8894 0.7885 

Balanced Accuracy 0.779 0.8733 0.8019 0.7871 

WBA1 0.8114 0.8814 0.8456 0.7878 

WBA2 0.7467 0.8652 0.7581 0.7864 

AUC ROC 0.9069 0.9317 0.8776 0.8226 

Brier score 0.1223 0.1052 0.0894 0.1522 

4.2. Model explainability 

While machine learning algorithms often perform better than traditional algorithm, they come at the cost of 
lower interpretability and explainability. In the recent years, several tools have been developed to help interpret 
and explain machine learning predictions, for example local interpretation tools (e.g. LIME, Shapley values, etc.), 
global interpretable tools (feature importance, partial dependence plot, etc.) and sensitivity analysis (EBA, 
Follow-up report on the use of machine learning for internal ratings-based models, 2023). In this paper, we use 
Shapley values to identify the drivers behind our predictions.  

Shapley values 

Shapley values provide the average marginal contribution of a feature to the prediction across all possible 
coalitions of features, where a coalition represents a subset of features. They are computed per observation (i.e.  
bank/quarter) and help explain individual predictions. We follow Bluwstein, Buckmann, Joseph, Kapadia & 
Şimşek (2023) and calculate the average absolute Shapley value per predictor across all test observations to help 
us understand the average behaviour of the model. 

For the Random forest, our best performing model, we find the most predictive indictors to be related to bank 
profitability (average interest expense of deposits, asset-deposit spread for non-financial corporations) and to 
solvency (equity to total liabilities and equity). The top 3 indicators each have a Shapley value of close to 8% or 
above. Other indicators with Shapley values above 4% relate to profitability (Interest income from households, 
Return on regulatory capital requirements), the sovereign-bank nexus (the Share of Sovereign Exposures of Total 
Assets) and the share of financial instruments measured at (amortised) cost in total financial instruments. 

Several of the most predictive indicators are found across models. Two of the top 10 indicators for the Random 
forest are also found in the top 10 for all the four other models. These two are the ratio of equity to total assets 
and the interest income from households. Another three indicators from the top 10 for the Random forest (Share 
of Sovereign Exposures of Total Assets, Average interest expense of deposits, Asset-deposit spread for non-
financial corporations) are among the top 10 for three of the four models. 
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Figure 8: Shapley values TOP 10 indicators 

 

4.3. Ensemble models 

Previous studies have shown that ensemble models often outperform individual models on their own (Suss & 
Treitel, 2019). We apply two ensemble techniques to assess the performance is improved. We use a simple 
average of all four models and a stacked procedure with Gradient Boosting model (GBM) and Generalised Linear 
model (GLM) as the meta-model. The stacked model basically combines the prediction of the individual models 
using GLM or GBM.  

Table 8 and Table 9 present the performance metrics for the ensemble models for the in-time and out-of-time 
test datasets. Regarding in-time performance, the Ensemble (GBM) is the best performing model in terms of AUC 
ROC and Brier score. On the other hand, the Ensemble (GLM) and Ensemble (Simple average) demonstrate the 
highest Sensitivity and WBA2. Random forest follows closely, showcasing comparable results across various 
performance metrics. Turning to the out-of-time performance, Random forest provides the best fit across most 
of the performance metrics. The ability of Ensemble (GBM) and Ensemble (GLM) to correctly identify distress 
events in the out-of-time dataset is considerably reduced as showcased by the drop in Sensitivity and WBA2 
metrics.  

Overall, ensemble techniques appear to improve the predictive performance compared to the single random 
forest model in the in-time test data. However, the random forest remains the best performing model in the out-
of-time test data. 

Table 8: Validation results for ensemble models based on in-time test data 

 

Performance 
metric 

Random 
Forest 

Ensemble (simple 
average) 

Ensemble 
(GLM) 

Ensemble 
(GBM) 

Accuracy 0.8132 0.7763 0.8079 0.8342 
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Performance 
metric 

Random 
Forest 

Ensemble (simple 
average) 

Ensemble 
(GLM) 

Ensemble 
(GBM) 

Sensitivity 0.8806 0.9104 0.9104 0.8806 

Specificity 0.7987 0.7476 0.7859 0.8243 

Balanced Accuracy 0.8397 0.829 0.8482 0.8524 

WBA1 0.8192 0.7883 0.8171 0.8384 

WBA2 0.8601 0.8697 0.8793 0.8665 

AUC ROC 0.9046 0.9012 0.9119 0.9133 

Brier score 0.143 0.1442 0.1291 0.122 

Table 9 Validation results for ensemble models based on out-of-time test dataset 

 

Performance 
metric 

Random 
Forest 

Ensemble (simple 
average) 

Ensemble 
(GLM) 

Ensemble 
(GBM) 

Accuracy 0.8884 0.8651 0.8930 0.9070 

Sensitivity 0.8571 0.8571 0.7857 0.7143 

Specificity 0.8894 0.8654 0.8966 0.9135 

Balanced Accuracy 0.8733 0.8613 0.8412 0.8139 

WBA1 0.8814 0.8633 0.8689 0.8637 

WBA2 0.8652 0.8592 0.8134 0.7641 

AUC ROC 0.9317 0.9219 0.9174 0.9031 

Brier score 0.1052 0.2193 0.0791 0.0741 

4.4. Robustness checks 

We carry a series of robustness checks to assess if our results are sensitive to the definition of distress and 
prediction horizon chosen. 

Definition of distress 
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First, we examine how sensitive are the results to the early warning threshold used to define the distress events. 
Instead of the 5th percentile, we re-run our analysis using the 10th percentile as the early warning threshold 
level.  

The list of selected features increases from 33 to 42 with most of the added indicators relating to asset quality 
and some new entries relating to liquidity, market and operational risk. 50% of the indicators selected in our 
default model (5th percentile) also feature in the model when using the 10th percentile early warning threshold. 
Most of the other indicators selected in our default model appear with a different expression, either with some 
variation in the change over time or with a different prediction horizon. The two macroeconomic indicators 
selected in our default model are no longer selected. The Shapley values for the TOP 10 indicators range within 
3.4% and 4.9% with no single or group of indicators standing out. 

In terms of in-time test performance (Table 13 in the Annex), random forest remains the best performing method 
in most of the performance metrics (AUC ROC, Brier score, Sensitivity, WBA2). Decision tree and neural network 
follow closely, with logistic regression again showing the lowest performance. When looking at the out-of-time 
test dataset (Table 14 in the Annex), random forest remains an adequate tool for predicting bank distress, with 
overall good performance. However, the performance of the remaining methods, particularly in terms predicting 
distress events as showcased by Sensitivity, is substantively reduced.   

Prediction horizon 

Second, we examine if our results are sensitive to the choice of a 1-year prediction horizon. We re-run our 
analysis using different prediction horizons: two quarters, three quarters and six quarters. 

The list of selected features increases with a longer prediction horizon. While a prediction horizon of two quarters 
results in 24 selected features, a prediction horizon of six quarters considers 43 features. The individual indicators 
selected for each prediction horizon stay broadly the same. In general, we observe that indicators selected for a 
shorter prediction horizon also appear in models with longer time horizons. Indicators that are added in models 
with longer prediction horizons are either already selected indicators with different lags or indicators that related 
to the same risk. Starting from a prediction horizon of 4 quarters, macroeconomic indicators appear, and their 
importance increases with longer horizons. 

Table 15 to Table 20 in the Annex show the models’ performance across the three different horizons. Overall, 
the random forest performs best in both the in-time test data and out-of-time test data, albeit in shorter horizons 
(2, 3) decision tree also gain some prominence. Logistic regression and neural network maintain adequate levels 
of performance, although with reduced performance in predicting distress (Sensitivity) for longer horizons. 
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5. Conclusions 

Machine learning techniques can be powerful ingredients of early warning systems. We found Random Forest to 
be the technique with the best predictive performance, demonstrating the highest AUC ROC, Sensitivity and 
Specificity scores. It also has the best overall calibration of the fitted probabilities, having the lowest Brier score. 
Decision Trees follow closely, showcasing comparable results across various performance metrics. Logistic 
regression and Neural Networks demonstrate satisfactory performance albeit with some shortcomings. 

To overcome the lack of a sufficient number of bank failures in our dataset, we adopt a new definition of distress 
to build an early warning system for predicting distress of large EU banks. The definition establishes specific 
thresholds above the regulatory requirements for capital, liquidity and allows to identify banks that fall below 
these set thresholds. This novel approach is directly aligned with the supervisory risk assessment framework and 
captures “weak” banks that merit higher supervisory attention. To adjust the model to the local approach to 
banking supervision, a multi-class model could be employed, which can distinguish between different severity 
levels (using multiple early warning distress thresholds) and types (liquidity, capital, leverage) of distress.  

We also use a holistic feature selection approach to identify the most significant indicators of bank distress ─ 
prior to the model development phase ─ from a comprehensive list of bank-specific and country-specific macro-
financial indicators. This improves the efficiency of the modelling process and ensures that only the most relevant 
variables enter our model. We find that the most informative indictors are associated with bank profitability, 
solvency and the sovereign-bank nexus. 

Unlike previous studies, we employ a series of sampling techniques and show that these can significantly improve 
the model’s ability to identify distress events, irrespective of the method used. Our study provides an important 
contribution to the literature of early warning systems, which has rarely used these techniques in the past to 
improve model performance. Our results suggest that sampling techniques are highly relevant when building 
early warning systems for such rare events as bank distress. 

Using the latest machine learning interpretability tools, we find that the most influential variables, as determined 
by Shapley values, are closely tied to bank profitability, including average interest expense of deposits and asset-
deposit spread for non-financial corporations, as well as solvency indicators such as equity to total liabilities and 
equity. 

Finally, we test the performance of three ensemble techniques and find that sometimes they can outperform 
the single best performing model.  Our findings are robust across various prediction horizons and alternative 
definitions of distress. 

Overall, our study provides valuable insights for an effective implementation of early warning systems for the 
banking sector. Banking supervision and macroprudential authorities can utilise our findings to identify bank 
weaknesses ahead of time and adopt pre-emptive measures to safeguard financial stability. 
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7. Annex 

7.1. Sample 

Table 10: Sample composition 

Country Number of banks 

AT 8 

BE 7 

BG 1 

CY 5 

DE 29 

DK 5 

EE 2 

ES 15 

FI 5 

FR 12 

GR 4 

HU 2 

IE 9 

IS 3 

IT 18 

LI 3 

LT 3 

LU 8 

LV 2 
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Country Number of banks 

MT 5 

NL 6 

NO 3 

PL 2 

PT 7 

RO 1 

SE 6 

SI 5 

Total 176 



 

 

7.2. Selected features  

Table 11 Final set of features, definitions and transformations, sources 

Category Variable Definition & transformation Source 

Asset quality AQT_14 Post-CRM exposure to original exposure 
EBA risk 

indicators 

Asset quality AQT_42.2.5 
Forbearance ratio (gross amount) for loans and 

advances- Non-financial corporations 

EBA risk 

indicators 

Asset quality 
AQT_68.1a_d

_1 

Share of financial instruments measured at FV 

through P&L in total IFRS 9 assets, q-o-q change 

EBA risk 

indicators 

Asset quality AQT_68.3 
Share of financial instruments measured at 

(amortised) cost in total financial instruments 

EBA risk 

indicators 

Funding 
FND_14_CALC

_pct_1 
Total assets, q-o-q percentage change 

EBA risk 

indicators 

Funding 
FND_14_CALC

_pct_4 
Total assets, y-o-y percentage change 

EBA risk 

indicators 

Funding FND_18_d_4 Customer deposits to total liabilities, y-o-y change 
EBA risk 

indicators 

Funding FND_33_d_4 Asset encumbrance ratio, y-o-y change 
EBA risk 

indicators 

Funding FND_33 Asset encumbrance ratio 
EBA risk 

indicators 

Funding FND_34_d_1 Average interest expense of deposits, q-o-q change 
EBA risk 

indicators 

Funding FND_34_d_4 Average interest expense of deposits, y-o-y change 
EBA risk 

indicators 

Funding FND_34 Average interest expense of deposits 
EBA risk 

indicators 

Macroeconomic and 

sectoral statistics 

Govt_Debt_to

_GDP 
Government debt (consolidated) (as % of GDP) SDW 

Macroeconomic and 

sectoral statistics 

HICP_YoY_gro

wth 
HICP overall index, annual rate of change SDW 
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Category Variable Definition & transformation Source 

Liquidity LIQ_5 Withdrawable funding (% of total liabilities) 
EBA risk 

indicators 

Profitability PFT_22_CALC Return on regulatory capital requirements 
EBA risk 

indicators 

Profitability PFT_26 
Net fee and commission income to total net 

operating income 

EBA risk 

indicators 

Profitability PFT_32 Net income to total net operating income 
EBA risk 

indicators 

Profitability PFT_39 Asset-deposit spread for non-financial corporations 
EBA risk 

indicators 

Profitability PFT_45 
Impairment and provisioning on financial asset to Net 

Ordinary Operating Income 

EBA risk 

indicators 

Profitability PFT_5 Interest income from households 
EBA risk 

indicators 

RDB RDB_3 Debt securities on Total Assets 
EBA risk 

indicators 

RDB RDB_6 Other assets on Total Assets 
EBA risk 

indicators 

SME SME_14 Post-CRM SME exposure to original SME exposure 
EBA risk 

indicators 

SME SME_16 
Increase in CET1 capital ratio with the application of 

SME supporting factor 

EBA risk 

indicators 

Solvency SVC_23 Retained earnings and reserves to total equity 
EBA risk 

indicators 

Solvency SVC_26 Equity to total liabilities and equity 
EBA risk 

indicators 

Solvency 
SVC_28_CALC

_log_pct_1 
Total RWA, q-o-q percentage change 

EBA risk 

indicators 

Solvency 
SVC_28_CALC

_pct_4 
Total RWA, y-o-y percentage change 

EBA risk 

indicators 
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Category Variable Definition & transformation Source 

Sovereign SVR_29 Share of Sovereign Exposures of Total Assets 
EBA risk 

indicators 

Notes: Only 30 variables are presented in this table instead of the total of 33 variables that enter in the model, since 3 
variables enter twice with different lags. 



 

 

Table 12 Summary statistics of selected features 

Variable N Mean St. dev. 25th Pct Median 75th Pct 

AQT_14_lag_4 2371 10 15 4.8 7 10 

AQT_42.2.5_lag_4 2371 0.073 0.075 0.021 0.046 0.096 

AQT_68.1a_d_1_lag_4 2371 -0.033 0.17 -0.0019 0 0.00064 

AQT_68.3_lag_4 2371 0.73 0.25 0.63 0.82 0.91 

FND_14_CALC_pct_1_lag_7 2371 0.0062 0.042 -0.015 0.0045 0.025 

FND_14_CALC_pct_4_lag_4 2371 0.036 0.11 -0.019 0.033 0.078 

FND_18_d_4_lag_5 2371 0.0085 0.04 -0.01 0.0069 0.027 

FND_33_d_4_lag_4 2371 0.00086 0.039 -0.016 0.00023 0.019 

FND_33_lag_6 2371 0.25 0.15 0.15 0.25 0.33 

FND_34_d_1_lag_8 2371 -0.00041 0.001 -0.00063 -0.0002 0.0000061 

FND_34_d_4_lag_5 2371 -0.0014 0.0025 -0.0024 -0.0012 -0.00023 

FND_34_lag_4 2371 0.0048 0.0055 0.0011 0.0035 0.0069 

Govt_Debt_to_GDP_lag_7 2371 90 39 62 85 114 

HICP_YoY_growth_lag_8 2371 0.97 1.1 0.2 1 1.7 
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Variable N Mean St. dev. 25th Pct Median 75th Pct 

LIQ_5_lag_4 2371 0.79 0.58 0.49 0.61 0.76 

PFT_22_CALC_lag_4 2371 0.00056 0.00084 0.00019 0.00047 0.00092 

PFT_22_CALC_lag_8 2371 0.00054 0.00087 0.00018 0.00046 0.00089 

PFT_26_lag_4 2371 0.27 0.14 0.18 0.27 0.34 

PFT_32_lag_5 2371 0.2 0.36 0.11 0.22 0.33 

PFT_39_lag_4 2371 0.096 0.051 0.064 0.088 0.12 

PFT_45_lag_4 2371 0.12 0.2 0.017 0.069 0.17 

PFT_45_lag_7 2371 0.15 0.25 0.021 0.076 0.19 

PFT_5_lag_5 2371 0.35 0.18 0.25 0.36 0.47 

RDB_3_lag_4 2371 0.16 0.08 0.11 0.15 0.21 

RDB_6_lag_8 2371 0.058 0.042 0.026 0.046 0.079 

SME_14_lag_4 2371 0.79 0.12 0.72 0.8 0.88 

SME_16_lag_5 2371 0.15 0.046 0.13 0.14 0.17 

SVC_23_lag_8 2371 0.42 0.41 0.25 0.5 0.69 

SVC_26_lag_4 2371 0.077 0.028 0.056 0.07 0.09 

SVC_28_CALC_log_pct_1_lag_6 2371 0.000049 0.0017 -0.00066 -0.0000059 0.00064 
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Variable N Mean St. dev. 25th Pct Median 75th Pct 

SVC_28_CALC_pct_4_lag_4 2371 0.015 0.12 -0.041 0.0049 0.052 

SVC_28_CALC_pct_4_lag_7 2371 0.0092 0.12 -0.046 0.0006 0.046 

SVR_29_lag_4 2371 0.11 0.089 0.039 0.087 0.16 

 

Figure 9 Boxplot of selected features, by distress/non-distress events 

 



PREDICTING BANK DISTRESS IN EUROPE: USING MACHINE LEARNING AND A NOVEL DEFINITION OF DISTRESS 

Page 43 EBA STAFF PAPER SERIES 

 



PREDICTING BANK DISTRESS IN EUROPE: USING MACHINE LEARNING AND A NOVEL DEFINITION OF DISTRESS 

Page 44 EBA STAFF PAPER SERIES 

 



PREDICTING BANK DISTRESS IN EUROPE: USING MACHINE LEARNING AND A NOVEL DEFINITION OF DISTRESS 

Page 45 EBA STAFF PAPER SERIES 

 

 

 



 

 

7.3. Robustness checks 

Table 13 Validation results for models based on the 10th percentile distress definition, in-time test dataset 

 

Performance metric Logit Random forest Decision tree (C5.0) Neural network 

Accuracy 0.7447 0.8132 0.7974 0.7342 

Sensitivity 0.806 0.8806 0.8358 0.8209 

Specificity 0.7316 0.7987 0.7891 0.7157 

Balanced Accuracy 0.7688 0.8397 0.8125 0.7683 

WBA1 0.7502 0.8192 0.8008 0.742 

WBA2 0.7874 0.8601 0.8242 0.7946 

AUC ROC 0.8299 0.9046 0.878 0.8494 

Brier score 0.1784 0.143 0.147 0.198 

Table 14 Validation results for models based on the 10th percentile distress definition, out-of-time test dataset 

 

Performance metric Logit Random forest Decision tree (C5.0) Neural network 

Accuracy 0.8395 0.8884 0.8837 0.7884 

Sensitivity 0.7143 0.8571 0.7143 0.7857 

Specificity 0.8438 0.8894 0.8894 0.7885 

Balanced Accuracy 0.779 0.8733 0.8019 0.7871 

WBA1 0.8114 0.8814 0.8456 0.7878 

WBA2 0.7467 0.8652 0.7581 0.7864 

AUC ROC 0.9069 0.9317 0.8776 0.8226 

Brier score 0.1223 0.1052 0.0894 0.1522 



PREDICTING BANK DISTRESS IN EUROPE: USING MACHINE LEARNING AND A NOVEL DEFINITION OF DISTRESS 

Page 47 EBA STAFF PAPER SERIES 

Table 15 Validation results for models based on 2 quarter prediction horizon, in-time test dataset 

 

Performance metric Logit Random forest Decision tree (C5.0) Neural network 

Accuracy 0.6966 0.8301 0.8131 0.7379 

Sensitivity 0.6912 0.8382 0.8529 0.8235 

Specificity 0.6977 0.8285 0.8052 0.7209 

Balanced Accuracy 0.6944 0.8334 0.8291 0.7722 

WBA1 0.696 0.8309 0.8172 0.7466 

WBA2 0.6928 0.8358 0.841 0.7979 

AUC ROC 0.7859 0.8953 0.8979 0.831 

Brier score 0.1856 0.1326 0.1371 0.2245 

Table 16 Validation results for models based on the 2 quarter prediction horizon, out-of-time test dataset 

 

Performance metric Logit Random forest Decision tree (C5.0) Neural network 

Accuracy 0.7727 0.8593 0.8074 0.7208 

Sensitivity 0.6667 0.7333 0.7333 0.7333 

Specificity 0.7763 0.8635 0.8098 0.7204 

Balanced Accuracy 0.7215 0.7984 0.7716 0.7268 

WBA1 0.7489 0.831 0.7907 0.7236 

WBA2 0.6941 0.7659 0.7525 0.7301 

AUC ROC 0.8594 0.8758 0.8888 0.7745 

Brier score 0.1429 0.1212 0.1484 0.249 

Table 17 Validation results for models based on the 3 quarter prediction horizon, in-time test dataset 
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Performance metric Logit Random forest Decision tree (C5.0) Neural network 

Accuracy 0.7321 0.8061 0.8367 0.7168 

Sensitivity 0.7727 0.8182 0.803 0.7576 

Specificity 0.7239 0.8037 0.8436 0.7086 

Balanced Accuracy 0.7483 0.8109 0.8233 0.7331 

WBA1 0.7361 0.8073 0.8334 0.7208 

WBA2 0.7605 0.8146 0.8132 0.7453 

AUC ROC 0.8114 0.8958 0.896 0.8233 

Brier score 0.1861 0.1392 0.1291 0.2204 

Table 18 Validation results for models based on the 3 quarter prediction horizon, out-of-time test dataset 

 

Performance metric Logit Random forest Decision tree (C5.0) Neural network 

Accuracy 0.8018 0.9099 0.8896 0.6486 

Sensitivity 0.6667 0.7333 0.8667 0.7333 

Specificity 0.8065 0.9161 0.8904 0.6457 

Balanced Accuracy 0.7366 0.8247 0.8786 0.6895 

WBA1 0.7716 0.8704 0.8845 0.6676 

WBA2 0.7016 0.779 0.8726 0.7114 

AUC ROC 0.8758 0.9345 0.9556 0.7392 

Brier score 0.1281 0.0922 0.0929 0.2818 

Table 19 Validation results for models based on the 6 quarter prediction horizon, in-time test dataset 

 

Performance metric Logit Random forest Decision tree (C5.0) Neural network 

Accuracy 0.7288 0.8274 0.7973 0.7726 

Sensitivity 0.7288 0.9492 0.8644 0.8136 
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Performance metric Logit Random forest Decision tree (C5.0) Neural network 

Specificity 0.7288 0.8039 0.7843 0.7647 

Balanced Accuracy 0.7288 0.8765 0.8244 0.7891 

WBA1 0.7288 0.8402 0.8043 0.7769 

WBA2 0.7288 0.9128 0.8444 0.8013 

AUC ROC 0.8171 0.9219 0.8976 0.85 

Brier score 0.1771 0.1335 0.1422 0.185 

Table 20 Validation results for models based on the 6 quarter prediction horizon, out-of-time test dataset 

 

Performance metric Logit Random forest Decision tree (C5.0) Neural network 

Accuracy 0.6721 0.8776 0.9007 0.6697 

Sensitivity 0.7692 0.8462 0.6923 0.3846 

Specificity 0.669 0.8786 0.9071 0.6786 

Balanced Accuracy 0.7191 0.8624 0.7997 0.5316 

WBA1 0.6941 0.8705 0.8534 0.6051 

WBA2 0.7442 0.8543 0.746 0.4581 

AUC ROC 0.8141 0.8857 0.9207 0.6126 

Brier score 0.2075 0.1194 0.0903 0.2561 
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