
Efficient or systemic banks: Can regulation strike a deal?

Tirupam Goel Bank for International Settlements

EBA Policy Research Workshop, 6-7 Nov 2024

Disclaimer: The views expressed here are those of the author, and not necessarily those of the Bank for International Settlements.

Evolution of US banks

▶ 1990s: Branching deregulation

- Led to consolidation and bigger banks
- 2008: Recognition of too-big-to-fail risks

Led to reforms that create disincentives for bigger banks

Should there be few big or many small banks?

Efficiency vs financial-stability trade-off

Large bank failures are socially more costly

- Resolution related losses e.g. fire sales
- Systemic losses (Kang et al, 2015)
- Complexity externality (Caballero & Simsek, 2013)
- ▶ Lehman failure & the GFC wiped around 4% of global GDP

Larger banks tend to be more efficient

- Diversify risks and spread costs (Diamond, 1984)
- Operational synergies (Kanatas and Qi, 2003)
- Even after considering risk-taking (Hughes and Mester, 2013)
- Even for the largest US banks (Wheelock and Wilson, 2018)

This paper

Model

- Embed heterogeneous banks in a macro framework
- Endogenous size distribution and entry-exit
- Calibrate using micro-data on US banks

Analysis

- Capital regulation \rightarrow shape banking dynamics
- Characterise optimal size-dependent regulation

Stylized model for intuition

Main takeaways

Tighter regulation has opposing effects on bank distribution

- Lower leverage \rightarrow banks grow more slowly
- ► Lower failure rate → banks survive longer
- Bank dynamics channel of capital regulation
- Equating either of these across banks is sub-optimal
 - leverage
 - riskiness
 - expected default losses

To optimally balance the trade-off, regulation should be flexibly size-dependent

- Tighter for larger banks
- Features more middle-sized banks

Related Literature

- Banking dynamics / bank heterogeneity: Competition for loans (Boyd and De Nicolo, 2005), imperfect competition among banks (Corbae and D' Erasmo, 2021; Jamilov, 2021), impact of risk-based capital and leverage requirements on heterogeneous banks (Muller, 2022) etc.
- Industry dynamics more generally: Productivity shocks in Hopenhayn (1992), Learning in Jovanovic (1982); Cost shocks in Asplund and Nocke (2006); Borrowing constraint due to limited enforcement and limited liability: Albuquerque and Hopenhayn (2004), Clementi and Hopenhayn (2006), Cooley and Quadrini (2006), etc.
- Macro-finance models: Gertler and Karadi (2010), Gertler and Kiyotaki (2010), Adrian & Boyarchenko (2012), etc.
- Capital regulation: Heuvel (2008), Begenau (2015), Nguyen (2014), Corbae and D' Erasmo (2014), Covas and Driscoll (2014), Christiano and Ikeda (2013), Passmore and Hafften (2019), etc.

Dynamic Model

Setup

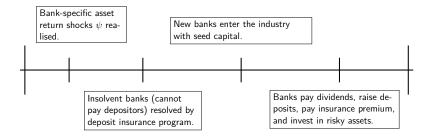
Time is discrete

Horizon is infinite

No aggregate uncertainty, only bank-level shocks

Entities:

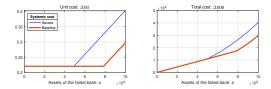
- Household Description
- Banks
- Government Description
- Regulator (sets bank capital regulation)

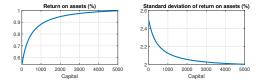

Bankers

Choose balance sheet components so as to maximize the stream of dividend payouts while satisfying capital regulation

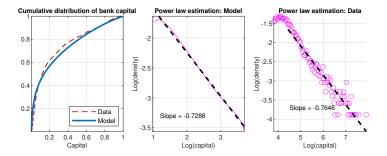
$$V(n) = \max_{s,d,e} \quad \left(\mathcal{H}(e) + \beta \int_{\psi^c} V(n') dF_s(\psi')\right)$$

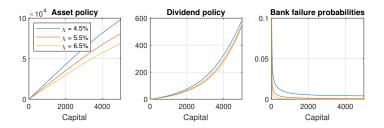
where $\underbrace{n' = \psi's - R.d}_{\text{Evolution of capital}}; \qquad n' \leq \tau \implies \psi^c = \frac{R.d + \tau}{s};$
s.t. $\underbrace{n+d = s + e + t.d}_{\text{Cash-flow constraint}}; \qquad \underbrace{\chi(n) \leq \frac{n-e}{s}}_{\text{Regulatory constraint}}; \qquad \underbrace{\psi^c = \frac{R.d + \tau}{s}}_{\text{Limited liability}};$


where $\textit{F}_{s}(\psi') \sim \textit{N}(heta(s), \sigma(s))$

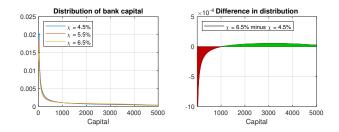

Timeline

Definition of the Stationary Competitive Equilibrium • show


Key aspects of the calibration



Bank capital distribution: Model vs data

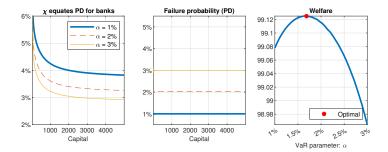

Tighter regulation \rightarrow Output vs financial-stability

- Lower bank lending
- Lower dividends (capital preservation)
- Lower PD

Tighter regulation \rightarrow Industry dynamics trade-off

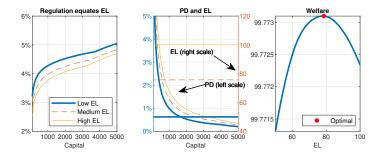
- Lower rate of growth in bank size
- Higher probability of survival
- \blacktriangleright \implies More middle-sized banks

Normative analysis

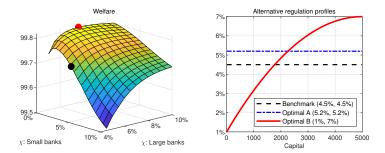


- Welfare profile reflects the trade-offs
- No welfare gain if distribution were exogenous show
- Higher risk / failure cost justify tighter regulation show

Bank-specific capital regulation: A tale of three regimes


Regime I: Equating PD across banks

- Comparable to Basel-II risk-weighted requirements
- Requires tighter regulation on smaller (riskier) banks
- ▶ Highest welfare achieved is *lower* than the baseline regime


Regime II: Equating $EL = PD \times EAD \times LGD$ across banks

- Comparable to the Basel-III G-SIB framework
- Requires tighter regulation on larger banks (higher EAD, LGD)
- ▶ Highest welfare achieved is *greater* than the baseline regime

Regime III: Flexible size-dependent regulation

- Takes both efficiency and risks into account
- Highest welfare among all previous regimes
- ▶ Optimal requirement is 7% for big and 1% for small banks

To summarise

Should regulation encourage or discourage large banks?

Trade-off: efficiency versus financial-stability

Develop a tractable model to study this trade-off

- Endogenous size distribution \rightarrow **bank dynamics channel**
- ▶ Explicit role of regulation → **normative analysis**

Main takeaways

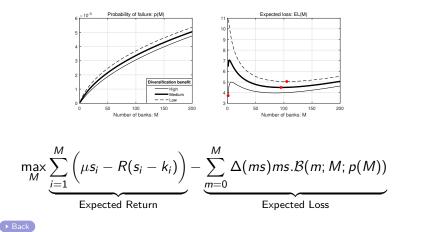
- Regulation has opposing effects on bank size-distribution
- Size-dependent regulation needed to deal with size-sensitive trade-off
- Optimal regulation is tighter for larger banks ...
- ... and induces more middle-sized banks

Thank You

Appendix

How to distribute capital across banks

▶ Planner distributes capital K across M banks: $\sum_{i=1}^{M} k_i = K$


Bank *i* with capital k_i raises deposits f_i at rate R
Invest in s_i = k_i + f_i projects such that k_i/s_i ≥ X

▶ Project returns are identical \rightarrow total return $z_i \sim \mathbb{N}(\mu s_i, \sigma^2 s_i^d)$

Bank fails when z_i ≤ R(s_i − k_i)
Unit cost of large bank failure is higher: Δ'(s_i) ≥ 0

How to distribute capital across banks

Assuming equal capital allocation, $k_i = K/M$:

2/14

Household

Consists of

- Representative worker
- Unit mass of atomistic bankers

Maximizes utility under perfect consumption insurance:

$$\max_{C_t,D_t} \quad \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t u(C_t)$$

s.t. $C_t + D_t = W_t + E_t + R_{t-1}D_{t-1} - T_t$

Government

Runs deposit insurance scheme

 $\blacktriangleright \text{ Mis-pricing} \rightarrow \text{ banks over-borrow} \rightarrow \text{ justify capital regulation}$

Covers shortfall in liabilities of failing banks
Resolving a larger bank is costlier

• Provide (random) seed-funding $n^e \sim G$ to entrant banks

Runs a balanced budget

Stationary competitive equilibrium

- 1. V(n), s(n), d(n) and e(n) solve the bank's problem given R:
- 2. Deposit market clears at interest rate R

$$\int d(n)d\mu(n) = D$$

3. Goods market clears

$$Y = \int \int_{\psi_c} \psi' s(n) dF_s(\psi') d\mu(n) = C + S + O - W$$

$$S = \int s(n) d\mu(n); \ O = \int \int^{\psi_c} \Delta(\psi' s(n)) dF_s(\psi') d\mu(n)$$

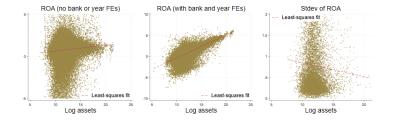
4. The distribution of bank capital is the unique fixed point of the distribution evolution operator T given entrant mass M:

$$\mu = T(\mu, M);$$

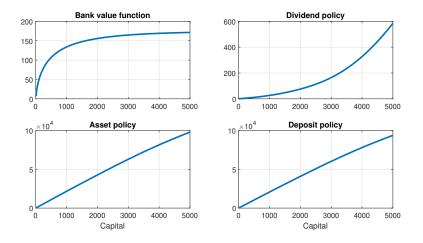
5. Government runs balanced budget: T + tD = start-up funding + liabilities of failed banks

Main parameters

Parameters	Symbol	Value
Discount factor	β	0.99
Resolution cost (percent of assets)	$\Delta(s)$	22%
Systemic cost (percent of GDP)	$\Delta(s)$	23% to 63%
Benchmark regulation	x	4.5%
Insurance premium rate	t	20 bps
Mean of asset returns	θ_{ψ}	1.02 - 0.0051/(1 + s)
S.d. of asset returns	σ_{ψ}	0.0195 + 0.0055/(1 + s)
Entrant distribution (lognormal)	$G(\theta_G, \sigma_G)$	165, 7.49
Default threshold	τ	7.01
Moments	Data	Model
Mean of ROA	0.76%	0.80%
S.d. of ROA	0.72%	2.20%
Mean of ROA, larger versus smaller banks	17.3 bps	27.5 bps
S.d. of ROA, larger versus smaller banks	-32.7 bps	-29.7 bps
Dividend payout to capital ratio	4.61%	3.60%
Exit rate	3.96%	2.46%
Ratio to smallest to median bank	1.45%	1.03%
KS statistic	0.0	0.0515
Power-law exponent	-0.764	-0.729


- Solve using global solution methods
- Bank value and policy functions show

Size and efficiency show

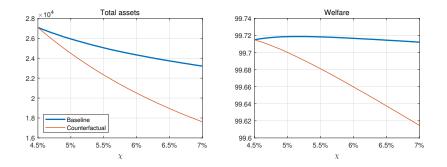


Size and efficiency

Notes: US commercial and savings banks. Pooled annual data from 2000 to 2019. Source: SNL. Back

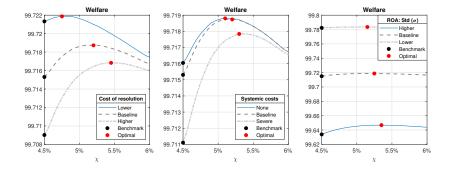
Value and policy functions

Stationary size-distribution of banks ...


... computed as the fixed point of the distribution evolution:

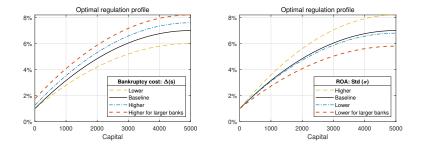
$$\mu(N) = \underbrace{M \int_{\tau}^{N} dG(n^{e})}_{Entrants} +$$

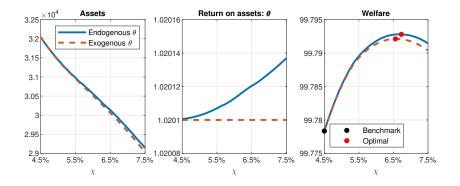
$$\underbrace{\int \left(\int_{\underline{\psi}}^{\overline{\psi}} \mathbb{1}\left[\tau \leq \psi s(n) - Rd(n) \leq N\right] dF_{s}(\psi)\right) d\mu_{-1}(n)}_{\text{Transition of incumbents net of exits}}$$


M: mass of entrants (same as mass of failures in steady state)
µ: cumulative distribution function for bank capital

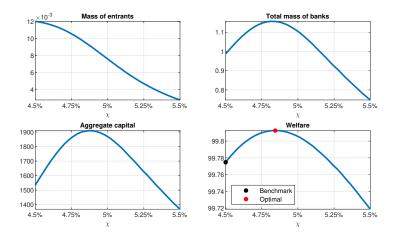
Role of distribution

▶ Back


Comparative statics


Comparative statics

Higher failure costs or greater riskiness justify tighter / steeper regulation


Endogenous return on assets

Note: The size-dependence of asset returns is switched off in this extension.

🕨 Back

Endogenous mass of banks

Note: Asset returns are also endogenous in this extension.

