Lending to Hedge Funds:

Does Competition Undermine Risk Management?

Christian Bittner

Deutsche Bundesbank and Goethe University Frankfurt

Stephan Jank

Deutsche Bundesbank

November 6, 2024: EBA Research Workshop, Paris

Disclaimer: The views expressed are our own and do not represent the views of Deutsche Bundesbank, the ECB or the Eurosystem.

Motivation: Are hedge funds systemically important?

Long-Term Capital Management (LTCM), 1998

- Highly leveraged hedge fund experienced significant losses during the Russian financial crisis
- Fed organized a rescue package of \$3.6 bn. from 14 banks

Motivation: Are hedge funds systemically important?

Long-Term Capital Management (LTCM), 1998

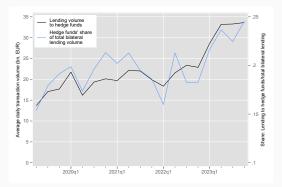
- Highly leveraged hedge fund experienced significant losses during the Russian financial crisis
- Fed organized a rescue package of \$3.6 bn. from 14 banks
- Testimony to the House Banking Committee, Greenspan:
 - [...] substantial damage could have been inflicted on many market participants, including some not directly involved with the firm, and could have potentially impaired the economies of many nations [...]
 - The major element of the control of leverage and capital is the structure of the counterparty relationship [...]

Motivation: Are hedge funds systemically important?

Long-Term Capital Management (LTCM), 1998

- Highly leveraged hedge fund experienced significant losses during the Russian financial crisis
- Fed organized a rescue package of \$3.6 bn. from 14 banks
- Testimony to the House Banking Committee, Greenspan:
 - [...] substantial damage could have been inflicted on many market participants, including some not directly involved with the firm, and could have potentially impaired the economies of many nations [...]
 - The major element of the control of leverage and capital is the structure of the counterparty relationship [...]

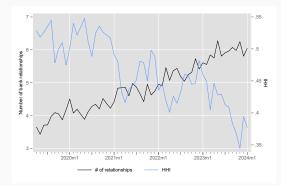
Archegos Capital Management, 2021


• Archegos default resulted in \$5.5 bn. losses for Credit Suisse and over \$10 bn. for banks worldwide

Bittner & Jank

Lending to Hedge Funds

Motivation: Growth of NBFI sector


- Hedge fund industry more than tripled within a decade to \$4.8 tn. AUM in 2022
- Growing interconnectedness between banks and NBFIs (Acharya et al., 2024)

Motivation: Increasing broker diversification

• Trend started after Lehman insolvency in 2008 (Dahlquist et al. 2024)

 \rightarrow Enhanced bargaining power for hedge funds in negotiations with banks

Lending to Hedge Funds

- Limited understanding of interconnectedness between banks and hedge funds
 - Banks' risk management to highly leveraged and opaque market participants
 - Competition may compromise banks' risk management (Bernanke, 2006)
- This paper: How does the enhanced bargaining power of hedge funds impact risk management practices of banks?

Data & descriptive statistics

Data description

- Banks' lending to hedge funds
 - 1. Credit registry of Euro area banks (AnaCredit) \Rightarrow probability of default
 - 2. Money market transactions of Euro area banks (MMSR) \Rightarrow lender (bank), borrower (hedge fund), collateral, haircut
- Hedge funds
 - SEC-filings (ADV and IAPD) \Rightarrow AUM, broker information
- Banks
 - Bank balance sheet data (EBA transparency exercise)
- Collateral
 - Rating information (CSDB)
 - Return data (Refinitiv)

• Repo transactions:

banks lending cash against collateral to hedge funds Variation of haircuts

- 14 Euro Area banks lending to hedge funds
 - On average: 45% relative to lending to real economy
- 179 hedge funds
 - Almost exclusively domiciled in Cayman, while management is predominantly in the US or UK
 - On average: \$20 bn. assets; 4 broker; PD of 1.5% (B+)
- Collateral: mainly government bonds; 40% high-grade

Bittner & Jank

Saturated regression

Analysis at the transaction level:

 $Haircut_{I(bfct)} = \beta HHI_{ft} + \gamma PD_{bft} + \alpha_{bct} + \varepsilon_{I(bfct)}$

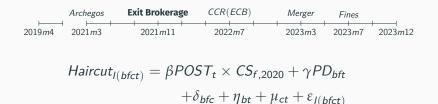
- Haircut_{I(bfct)}, haircut (%) applied by bank b for collateral c in a repo transaction with hedge fund f at date t
- *HHI*_{ft}, Herfindahl-Hirschman Index, quantifies the concentration of bank funding relationships of hedge fund *f* at date *t* based on the previous month
- within bank-collateral-date analysis (α_{bct}), and controlling for the default probability of hedge fund freported by bank b at date t

Effect of funding concentration on haircuts

$Haircut_{I(bfct)}$	(1)	(2)	(3)	(4)
HHI _{ft}	1.31***	1.21***	1.23***	1.30***
	(5.77)	(3.27)	(3.03)	(2.60)
PD _{bft}	18.84***	21.96**	23.74**	24.85*
	(7.36)	(2.40)	(2.13)	(1.81)
Ν	450,787	449,578	446,519	229,561
R ² (%)	92.8	98.0	98.2	96.7
Security FE	\checkmark	-	-	-
Date FE	\checkmark	\checkmark	\checkmark	-
Bank-Security-Month FE	-	\checkmark	-	-
Bank-Security-Week FE	-	-	\checkmark	-
Bank-Security-Date FE	-	-	-	\checkmark

standard errors are clustered at the bank-fund-security level

One interquartile range \Downarrow in hedge funds' funding concentration is associated with a 0.51 p.p. \Downarrow in haircuts.


Alternative concentration measure

Zero vs. positive haircut

Bittner & Jank

Natural experiment

Natural experiment: Credit Suisse ´s exit from prime brokerage

- *POST_t*, equals one after Credit Suisse announced its exit from the prime brokerage business on November 4, 2021, and zero otherwise
- CS_{f,2020}, equals one if Credit Suisse provided brokerage services to hedge fund *f* as of 2020, and zero otherwise
- <u>Note</u>: Hedge funds with relationships to Credit Suisse experience lower growth in broker relationships Broker

Effect of Credit Suisse exit on haircuts

Haircut _{I(bfct)}	(1)	(2)	(3)	(4)
$POST_t \times CS_{f,2020}$	0.49**	0.47**	0.29**	0.34***
	(2.28)	(2.28)	(2.08)	(2.14)
POST _t	-0.08			
	(-1.39)			
Ν	355,840	355,840	204,994	204,994
R ² (%)	97.3	97.4	98.3	98.3
PD _{bft}	\checkmark	\checkmark	\checkmark	\checkmark
Bank-Counterparty-Security FE	\checkmark	\checkmark	\checkmark	\checkmark
Date FE	-	\checkmark	-	-
Security-Date FE	-	-	\checkmark	\checkmark
Bank-Date FE	-	-	-	\checkmark

standard errors are clustered at the bank-fund-security level

Haircuts 0.49 p.p. \uparrow for hedge funds' with pre-existing relationships with Credit Suisse after its prime brokerage exit.

Relationships

Zero vs. positive haircuts Robustness

Bittner & Jank

Adequacy of haircuts

 $1(\textit{Haircut}_{\textit{I}(\textit{bfct})} < \textit{Haircut}_{\textit{ct}}^{m}) = \beta \textit{HHI}_{\textit{ft}} + \gamma \textit{PD}_{\textit{bft}} + \alpha_{\textit{bct}} + \varepsilon_{\textit{I}(\textit{bfct})}$

Dependent variable: dummy indicating that haircut is insufficient based on a specific model and value-at-risk.

Insufficient haircut; VaR 5%	(1)	(2)	(3)	(4)	
	Histo	orical	GARCH (1,1)		
HHI _{ft}	-0.24***	-0.24***	-0.26***	-0.27***	
	(-3.37)	(-2.90)	(-4.21)	(-3.65)	
R ² (%)	96.4	93.7	94.4	93.4	
Ν	305,400	157,544	325,597	168,936	
Date FE	\checkmark	-	\checkmark	-	
Bank-Security-Week FE	\checkmark	-	\checkmark	-	
Bank-Security-Date FE	-	\checkmark	-	\checkmark	

- Archegos default revealed vulnerabilities in banks' risk management
- Regulatory scrutiny and risk management frameworks are crucial in mitigating systemic risks posed by interconnected (leveraged) entities
- Our study examines these dynamics through the lens of secured lending transactions, providing insights into how bargaining power affects risk management:
 - Hedge funds with a more diversified funding structure have lower haircuts.
 - Haircuts fall below the levels of benchmark models.

SD (Haircut)	(1)	(2) Haircuts	(2) (3) (4) Haircuts demeaned by			
Rating		security	security- month	security- week	security- date	
High Grade	1.08	0.37	0.27	0.25	0.24	
Medium-Low Grade	4.57	1.43	0.9	0.86	0.84	
Speculative Grade (or NA)	6.33	2.53	1.53	1.45	1.43	
Full Sample	5.74	1.59	0.98	0.93	0.91	

Back

Panel A: Bank	Sample	e (N=14)	Refere	nce (N=66)
	Mean	SD	Mean	SD
Assets (in € bn)	928.16	629.57	142.72	211.74
G-SIB Bucket	.79	.97	.06	.30
CET1 Ratio	.15	.03	.19	.08
Traded Assets / Total Assets	.15	.03	.04	.07
Liquid Assets / Total Assets	.12	.05	.15	.10
Panel B: Hedge Fund	Sample (N=179)		Referen	ce (N=6,864)
	Mean	SD	Mean	SD
Number of Broker Relationships	4.08	2.64	1.95	1.90
Credit Suisse Exposure (CS)	.58	.50	.13	.33
AUM (in \$ bn, Company)	161.55	190.63	23.34	68.62

Alternative concentration measure

Haircut _{I(bfct)}	(1)	(2)	(3)	(4)
CR _{1,ft}	1.36***	1.29***	1.31***	1.40***
	(5.85)	(3.52)	(3.28)	(2.80)
PD _{bft}	18.77***	21.17**	22.97**	24.08*
	(7.32)	(2.33)	(2.08)	(1.77)
Constant	2.98***	2.98***	2.95***	3.13***
	(19.71)	(10.19)	(8.65)	(7.14)
R ² (%)	92.8	98.0	98.2	96.7
Ν	450,787	449,578	446,519	229,561
Security FE	\checkmark	-	-	-
Date FE	\checkmark	\checkmark	\checkmark	-
Bank-Security-Month FE	-	\checkmark	-	-
Bank-Security-Week FE	-	-	\checkmark	-
Bank-Security-Date FE	-	-	-	\checkmark

Zero vs. positive haircuts

Sample:	1 (Haire	: ut = 0)	t = 0) Haircut		
	fu	Ill	Haircut > 0		
	(1) (2)		(3)	(4)	
HHI _{ft}	-0.26***	-0.27***	1.59***	1.67**	
	(-4.75)	(-4.06)	(2.64)	(2.27)	
N	446,519	229,561	300,210	153,342	
R ² (%)	95.5	91.9	97.8	95.7	
<i>PD_{bft}</i> Date FE Bank-Security-Week FE Bank-Security-Date FE	√ √ -	√ - - √	√ √ -	√ - - √	

Natural experiment: broker relationship growth

Growth of Broker Relationships	(1)	(2)
$Post_t imes CS_{f,2020}$	-0.06***	
	(-6.98)	
$2018_t \times CS_{f,2020}$		0.00
		(0.18)
$2019_t \times CS_{f,2020}$		-0.01
		(-1.15)
$2021_t \times CS_{f,2020}$		-0.05***
		(-3.22)
$2022_t \times CS_{f,2020}$		-0.04***
		(-2.64)
$2023_t \times CS_{f,2020}$		-0.13***
		(-9.22)
R ² (%)	22.2	22.4
N	35,372	35,372
Fund FE	\checkmark	\checkmark
Year FE	\checkmark	\checkmark

standard errors are clustered at the fund level

Relationships:	up	to 5	more than 5		
$Haircut_{I(bfct)}$	(1)	(2)	(3)	(4)	
$POST_t \times CS_{f,2020}$	1.91**	3.11***	0.06	0.06	
	(2.04)	(6.55)	(1.35)	(1.60)	
Ν	97,435	96,435	92,641	91,767	
R ² (%)	97.2	97.2	98.6	98.6	
PD _{bft}	\checkmark	\checkmark	\checkmark	\checkmark	
Bank-Counterparty-Security FE	\checkmark	\checkmark	\checkmark	\checkmark	
Security-Date FE	\checkmark	\checkmark	\checkmark	\checkmark	
Bank-Date FE	-	\checkmark	-	\checkmark	

Natural experiment: zero vs. positive haircuts

Sample:	•	c ut = 0) Ill	Haiı Hairci	
	(1)	(2)	(3)	(4)
$POST_t \times CS_{f,2020}$	-0.16** (-2.53)	-0.16** (-2.29)	0.40* (1.68)	0.44* (1.77)
N R ² (%)	204,994 97.1	204,299 97.2	138,166 97.7	137,187 97.7
<i>PD_{bft}</i> Bank-Counterparty-Security FE Security-Date FE Bank-Date FE	√ √ -	\checkmark	√ √ -	\checkmark

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
$Haircut_{I(bfct)}$	pre trend		confounding events		avera	ge PD	clustering	
$POST_t \times CS_{f,2020}$	0.32** (2.15)	0.38** (2.20)	0.19* (1.79)	0.24** (2.05)	0.34** (2.37)	0.36** (2.31)	0.29** (2.68)	0.34** (3.02)
$PRE_t \times CS_{f,2020}$	0.07 (0.58)	0.09 (0.64)						
<i>R</i> ² (%) N	98.3 204,994	98.3 204,299	98.1 118,526	98.1 118,005	98.3 204,994	98.3 204,299	98.3 204,994	98.3 204,299
PD Bank-Counterparty-Security FE Security-Date FE Bank-Date FE	PD _{bft} √ √	PD _{bft} √ √	PD _{bft} √ -	PD _{bft} √ √	PD _{ft} ✓ ✓	PD _{ft} ✓ ✓	PD _{bft} √ √	PD _{bft} √ √

standard errors are clustered at the bank-fund-security level in column (1) to (6) and at the bank, fund, security level in column (7) and (8)