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Abstract

We study the effect of going-concern contingent capital on bank risk choice. Op-
timal conversion ahead of default forces deleveraging in highly levered states, when
risk incentives are worse. The equity infusion reduces endogenous risk shifting by
diluting returns in high states.
Interestingly, contingent capital may be less risky in equilibrium than traditional
debt, as its lower priority is compensated by reduced endogenous risk. Its effective-
ness in risk reduction depends critically on the informativeness of the trigger. We
show that adopting a noisy market trigger produces excess conversion (type II error),
while a noisy accounting trigger converts too infrequently (type I error) because of
regulatory forbearance.
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1 Introduction

During the recent credit boom, bank capital had fallen at historical lows. In the subse-
quent crisis, banks could not absorb asset losses, leading to credit market disruption and
spillovers to the real economy. Regulatory reform has called for more bank equity to ensure
ex post risk absorption by shareholders, as well as to reduce ex ante incentives for excess
risk.

Under Basel III rules, the new capital ratios may be satisfied only by common equity. Yet
there is support for allowing contingent capital to count for extra buffers, such as those
for SIFI. This form of long term debt (called also contingent convertible, or CoCo bonds)
automatically converts to equity upon a trigger signaling reduced solvency. So called bail-
in capital converts into equity only upon bank insolvency, when equity is worthless. This
protects other lenders, but does not have an effect on asset risk in equilibrium. The more
interesting version is ”going-concern” contingent capital, where debt may convert in a
timely fashion, ahead of distress.

Originally proposed by Flannery (2002), the case for this form of contingent capital has
been carefully outlined in Kashyap et al. (2008). A recent literature has discussed its de-
sign in terms of reducing financial distress costs and deposit insurance losses (Albul et al.
(2010), McDonald (2011), Pennacchi (2011), Pennacchi et al. (2011)).
While most authors argue that contingent capital reduce risk shifting incentives (asset
substitution), for tractability their models assume asset risk is exogenous and unaffected
by the introduction of CoCo bonds, focusing on their ex post buffering effect.1

In our model, asset risk is a choice that reflects bankers’ incentives, which deteriorate as
leverage increases. Our basic result is that the chance of conversion in high leverage states
reduces ex ante risk shifting. The intuition is that conversion dilutes high returns, dis-
couraging gambling. CoCo effectiveness is shown to depend on the precision of the trigger,
which optimally should deliver deleveraging when this is most valuable, namely when risk
incentives deteriorate.

There are clear trade offs in CoCo design. A higher trigger and larger CoCo amount lead
to more frequent and larger conversions respectively, and a higher equity content. We show
that increasing the amount of CoCo ratio capital ultimately becomes counterproductive.
Once a very large conversion at a fixed conversion ratio delivers a capital gain to equity-
holders, this increases their risk incentives. 2

1A partial exception is Chen et al. (2013), who analyze endogenous strategic default and show that
conversion reduces its frequency.

2Value transfers cannot be ruled out by varying the conversion ratio, unless the bonds may convert in
an infinite amount of shares. Such a contractual feature would be impossible in reality, not least for legal
reasons.
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As a result of this tradeoff, there is an optimal design in terms of the trigger level and
optimal amount of contingent capital, even in the absence of issuance or bankruptcy costs.

CoCos are incorrectly considered a package of conventional bonds and a short position in a
put option on the value of assets. This neglects their risk-reducing effect, which reduces the
value of their short put position. (It also ignores the fact that deposit insurance also bears
some risk). We obtain the interesting result that optimally designed CoCo bonds may be in
equilibrium safer than conventional bank bonds, because they reduce endogenous asset risk.

The model allows to measure how well contingent capital compares with straight equity.
More CoCo debt may need to be issued to substitute for equity in terms of risk reduction.
However, we show that this ratio declines as trigger precision improves.

A common limit of most models on CoCo design is the reliance on asset value triggers.
Bank assets are typically opaque and their value is not easily observable. In fact, all out-
standing contingent capital bonds at present are designed to convert upon accounting book
equity thresholds. Confidence in market prices as triggers has probably been challenged by
two factors. The first is the poor market pricing on bank risk before the crisis (although
in part justified by high risk shifting gains). A more subtle reason has been the possibility
of multiple equilibria with equity triggers identified by Sundaresan and Wang (2010) even
under rational market pricing. Our main extension compares triggers based on a noisy
market price (market equity) vis a vis those set on endogenous accounting values of book
equity. We recognize here that bankers prefer to understate leverage, so that regulatory
pressure is often necessary to induce banks to recognize losses. Yet regulators may also
wish to suppress bad news, in order to limit bank funding costs and avoid runs, or protect
their reputation. We find that market triggers produce excess conversions and thus lead
to more risk bearing, while regulated accounting triggers convert too infrequently because
of regulatory forbearance.

Intuitively, while relying on market prices may produce more type II errors (converting
when not necessary), it avoids forbearance when the regulator is tempted to gamble on
asset price recovery (Flannery, 2010). So a key advantage of a (noisy) market trigger is
that by eliminating this discretion it reduces type I errors, namely not converting when
necessary. In general, a market trigger produces more frequent recapitalizations. On the
other hand, this also suggests that a double trigger may increase precision by filtering out
noise. Breaching a minimum market equity level would then not force immediate conver-
sion, that would need to be also validated by the regulator, as in the proposal by Hart and
Zingales (2011) to use CDS prices to signal bank risk. This would enhance public attention
to the risk of regulatory forbearance.

In order to focus on their risk prevention effect, CoCo bonds are more stylized in our set-
ting relative to other models in the literature (Albul et al. (2010), Bolton and Samama
(2012), Glasserman and Nouri (2012), Hilscher and Raviv (2011), Koziol and Lawrenz
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(2012), Madan and Schoutens (2010)). Alternative approaches are offered in Duffie (2010)
and McDonald (2011), where the case of conversion in a systemic crisis is examined. A
specific design aimed at containing endogenous risk is sketched by Squam Lake Working
Group, who propose banker compensation to be based on gradual vesting of contingent
bonds.

Similarly to the existing literature, our analysis of the regulatory framework is limited, as
we take initial bank leverage as exogenous for the sake of tractability. In principle, an op-
timal capital ratio already trades off some cost of bank equity capital against endogenous
risk shifting. Deposit insurance risk is also not priced. (This is partially justified in our
set up, where deposit insurance losses are a transfer among risk neutral agents, and would
be zero in the absence of deliberate risk taking.) Changing this assumption would not
alter our basic results, though for banks with very high leverage, for which even conversion
cannot restore risk incentives, a different policy tool would be needed.

In general, CoCos remain less effective than equity at risk control, so they may be justified
only as a cheaper solution for bank shareholders. Just as capital requirements, they are
less effective at controlling deliberate exposure to tail risk (Perotti et al. (2011),Chen et al.
(2013)).

Section 2 presents the basic model, and Section 3 shows how CoCo design affect the banker’s
risk taking incentives. Section 4 compares the risk-reducing effect of CoCos against equity
and convertible debentures converted at will, which also have been proposed as a solution
to risk-shifting (Green, 1984). Section 5 presents the crucial comparison of market and
regulated triggers. Section 6 concludes. All proofs are in Appendix.

2 The Model

2.1 The Timeline

The sequence of events is:

• at t = 0: The banker has a stock of loans with initial value of 1, funded by equity of
amount 1−D and debt D. The debt may include an amount of C convertible bonds
and D − C in deposits.

• at t = 1: Asset values are subject to an exogenous shock ζ, distributed uniformly
over [−δ, δ]. The interim asset value is observable by the banker. The banker chooses
risk control effort, which affects asset risk and value at t = 2. After that, precise
information about the interim asset value is revealed to the market with probability
ϕ. Conversion occurs if the asset value is below the trigger value.

• at t = 2: The final value of assets is realized, and all payoffs are distributed.

The sequence of events is presented in Figure 1.
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Figure 1: The sequence of events

2.2 Agents

There is one active agent in the model: the banker/bank owner. (Later we introduce a
regulator.) Borrowers are price-takers, so lending is represented as an asset choice by the
banker. Depositors are insured and passive. Conversion of CoCo is automatic once the
value of assets falls below the trigger value.

The banker and investors are risk-neutral and rational. The banker chooses either to exert
effort to control credit risk (e = 1) or not (e = 0). Effort is costless, and result in better
credit quality (higher mean and lower risk).

The banker’s payoff is the value of the original bank equity at t = 2.3

2.3 Information and Investment Technology

The bank has an exogenous amount of debt D, which includes only deposits if no convert-
ible bonds are issued. The deposit rate is normalized to zero. Bank deposits are insured,
and the banker enjoys limited liability. The banker invests capital 1−D at t = 0, so as to
satisfy an exogenous capital requirements of 1−D. The assets are not risk-weighted. The
initial assets value at t = 0 is 1, so there is no excess capital. Interest rate is zero.

At t = 1, asset value equals 1 + ζ, where ζ is an exogenous shock uniformly distributed
over [−δ, δ]. The banker observes the exact realization of interim assets value V1, and thus
the interim leverage D

v
. We denote the realization of V1 as v ∈ [1 − δ, 1 + δ]. We assume

that no bank equity may be raised at time t = 1 if leverage turns out to be high.

3We assume the bank manager is the sole shareholder, to focus on the interaction of the share price
and risk-taking incentives, rather than on the agency conflict between the manager and the shareholder.
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Next, the banker chooses whether to exert effort to control the riskiness of bank loans.
Depending on his choice, asset values at t = 2 may have two outcomes, safe or risky. If
the banker exercises risk control (effort e = 1), it produces a safe payoff with gross return
1. Alternatively, when e = 0, the banker chooses a risky credit strategy4, whose payoff at
t = 2 equals v + ε, where ε follows a distribution F (ε) with density function f(ε), mean
E(ε) = −z, and standard deviation σ. Thus, the riskier strategy yields a lower mean payoff
v − z relative to the safer asset choice.5

After the risk choice is made, the value v is revealed with probability ϕ to all investors.
A riskier strategy may enhance equity in high leverage states. To ensure bank solvency
under a safe strategy, we assume that the maximum interim asset drop never fully wipes
out equity, namely 1−δ−D ≥ 0. We discuss later relaxing this assumption (see Appendix).

2.4 Convertible Capital Design

The bank may be required to issue an amount of C of convertible bonds.

In our model (as well as in outstanding CoCo bond), contingent capital is automatically
converted into equity when the interim asset value v falls below a pre-specified trigger level
vT . Conversion may occur at time t = 1 or t = 2.

Issuing CoCo bonds substitute a part of deposits, which drop to D − C, so the initial
leverage does not change.
To simplify the analysis, the interim coupon rate is normalized to zero.

In the basic model we assume that it is mandatory for the banker to issue CoCos. Later
we show that the banker never issues CoCos voluntarily at t = 0.

The conversion ratio, modelled along existing CoCo bonds, is the ratio of nominal value
over the trigger asset value minus debt vT : d = C

vT−D
.6 After conversion, the amount of

shares is d+ 1. Note that the banker is never wiped out unless the value of CoCos is also
zero. The payoff structure is presented in the Figure 2.

We consider now what CoCo design improves banker’s risk incentives. Intuitively, the trig-
ger should induce CoCos conversion when bank interim leverage is high enough to create

4The distinction safe-risky is meant to distinguish between moderate, properly priced credit risk and a
riskier gamble with lower economic value.

5As a result, the distribution of asset return in the safe outcome has second-order dominance relative
to risky outcome, though not first-order dominance.

6The fixed conversion ratio produces value redistribution at conversion as soon as v is strictly below
vT .
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Figure 2: Payoff of bondholders and shareholders in case of no conversion and conversion
at t = 1 (d < 1)

poor risk control incentives, but conversion is unnecessary in well capitalized banks.

2.5 Results

2.5.1 The risk taking incentive

The banker bases her risk decision on his expected payoff, conditional on being solvent.
For very low realizations of asset values the bank will default, wiping out also CoCo holders
and forcing a payment by the deposit insurance fund.

The expected banker payoff from a risky asset choice is:

(1− F (D − v)) · E(V2 −D|V2 −D > 0) =

∫ ∞
D−v

(V2 −D)f(ε)dε (1)

Alternatively, the bank’s payoff from the risky asset is the sum of its unconditional mean
E(V2 −D) = v − z −D (which may be negative) and a measure of the right tail return in
solvent states, denoted by ∆(v) ≥ 0.

(1− F (D − v)) · E(V2 −D|V2 −D > 0) = v −D − z + ∆(v) (2)

Here ∆(v) is the value of the put option (also called Merton’s put) enjoyed by shareholders
under limited liability. It measures the temptation of the banker to shift risk, defined as
the return difference between a risky and safe strategy for the banker:

(1− F (D − v)) · E(V2 −D|V2 −D > 0)− (v −D) = −z + ∆(v)
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From now on we refer to the return ∆(v) as a measure of risk shifting incentives. We now
characterize how its value depends on the specific distribution of asset risk.

Convex risk incentives: If the risky payoff is normally or uniformly distributed, risk
shifting incentives ∆(v) are monotonically increasing and convex in leverage.

Risk incentives and exogenous risk: Risk shifting incentives increase with a higher
volatility of risky asset σ.

Without any specific assumption on f(ε), we assume that the risk incentive function has
a similar structure as under normal or uniform distribution.

Assumption 1 Risk shifting incentives ∆(v) are an increasing and convex function of
leverage D

v
: ∆′(v) ≤ 0,∆′′(v) ≥ 0. Also ∆(v) are increasing with σ: ∆′(σ) ≥ 0.

Figure 3: Risk incentives under Gaussian risk distribution

For a normal distribution, risk shifting incentives are given by:

∆(v) = (v −D − z) ·
[
Φ

(
v −D − z

σ

)
− 1

]
+ σ · φ

(
v −D − z

σ

)
(3)

2.5.2 Bank risk without convertible bonds

First, we consider the risk choice of the banker in the absence of convertible bonds C = 0.
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The banker compares the payoff from the risky and the safe asset. The banker’s program
is:

max
e
e · (v −D) + (1− e) · (v − z −D + ∆(v))

s.t. e ∈ {0, 1} (4)

Under the Assumption 1, the optimal effort choice by the banker takes the form:

e =

{
1 if v ≥ ∆−1(z) ≡ v∗

0 otherwise
(5)

We denote as v∗ ≡ ∆−1(z) the cut-off interim asset value, above which the banker exerts
effort without conversion. At v = v∗ the net present value of the the banker’s choice of a
risky lending strategy is zero.

For normal distribution function the cut-off interim asset value v∗ is given implicitly by:

(v −D − z) ·
[
Φ

(
v −D − z

σ

)
− 1

]
+ σ · φ

(
v −D − z

σ

)
= z (6)

Proposition 1 If at the interim period leverage is low (v ≥ v∗), the banker exerts effort
in order to control risk. If v < v∗, she does not.
Moreover, the ex ante probability that the banker will choose at t = 1 to control risk (1−δ−v∗

2δ
)

decreases with the volatility of risky asset σ.

Note that the asset value revelation of v does not have any effect on the banker’s risk
incentives, as disclosure does not change leverage.

3 Optimal CoCo design

This section studies how the banker’s incentives change if the bank issues convertible bonds,
and solves for their optimal trigger level. Later we study the effect of the amount of CoCo
debt C.

3.1 Optimal trigger value

The trigger value vT is initially set lower than the initial book value 1, else there is imme-
diate conversion at time 0. If v > vT , conversion does not occur. If v ≤ vT , conversion
occurs, provided the asset value is revealed.

We show next that inducing conversion for banks which do not have risk shifting incentives
does not contribute to efficiency.
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Corollary 1 (to Proposition 1) Setting a trigger asset value higher than v∗ does not
change risk incentives for low leverage banks (with v ≥ v∗).

This enables us to restrict the range of trigger values to the interval vT < min[v∗; 1].

Assumption 2 The trigger asset value vT is such that no conversion is triggered upon the
revelation of an interim value v ≥ v∗, so that vT ≤ v∗.

We later show that this is efficient, as dilution which does not affect risk incentive may be
counterproductive.
Consider now the banker’s choice:

max
e
e · [(v −D) · (I(v ≥ vT ) + (1− ϕ) · I(v < vT ))︸ ︷︷ ︸

equity value if no conversion and e=1

+

v −D + C

d+ 1
· ϕ · I(v < vT )︸ ︷︷ ︸

equity value if conversion and e=1

] +

(1− e) · [(v − z −D + ∆(v)) · (I(v ≥ vT ) + (1− ϕ) · I(v < vT ))︸ ︷︷ ︸
equity value if no conversion and e=0

+

v − z −D + C + ∆(v + C)

d+ 1
· ϕ · I(v < vT )︸ ︷︷ ︸

equity value if conversion and e=0

]

s.t. e ∈ {0, 1} (7)

where I(·) is an indicator function, and d = C
vT−D

is the conversion ratio.

Figure 4 shows that the effort choice may not be monotonic in the interim asset value.

Figure 4: Risk incentives

There are two critical interim asset values. The first is v∗, the threshold for effort even
when no conversion takes place. The second is v∗C , the value of interim assets above which
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Figure 5: Cut-off value v∗C

the introduction of CoCos improves effort.

Intuitively, risk incentives may improve with CoCos only if ϕ > 0, that is, if the trigger is
informative about poor incentives and forces recapitalization in the right states.

Lemma 1 The introduction of CoCos improves effort for banks with v∗C ≤ v ≤ vT . Banks
with extremely high leverage v < v∗C do not change their effort choice since their risk-shifting
return is too large. Banks with v > vT are not affected.

A bank with v < v∗C has such high leverage that CoCos can not improve its risk-shifting
incentives7.

Note that the difference
vT−v∗C

2δ
measures the expected improvement in risk incentive E(∆e)

induced by CoCos. It is strictly decreasing in v∗C . It is easy to see that v∗C is in the range
[v∗ − C, v∗] and decreases with the probability of information revelation ϕ (see Figure 5).

Proposition 2 The trigger value is optimally set at vT = v∗, which maximizes the expected
effort

vT−v∗C
2δ

for a given amount of CoCos C.

Figure 4 shows that unless the trigger vT is chosen optimally, risk incentives are not nec-
essarily monotonic in v. If the trigger is too high (above v∗), CoCos will not affect effort.
But if it is too low (below v∗), there will be no conversion for an intermediate range of
highly levered banks. This is clearly inefficient. As it is easier to induce effort for higher
v, so it cannot be efficient to allow effort to fall as v increases.

As a result, setting the trigger to vT = v∗ guarantees the monotonicity of incentives with
respect to leverage, as shown in Figure 6.

The optimal trigger value v∗ depends on the risky opportunities available to the banker.
A higher asset volatility increases the risk shifting return, which becomes attractive to the
banker for a larger range of interim values v. Intuitively, the trigger value should be raised
to adjust incentives when asset values are riskier in a mean-preserving sense.

Lemma 2 A higher asset volatility requires that the trigger value be raised to maintain
risk-shifting incentives.

7If CoCos are large enough (v∗C < 1 − δ), this range does not arise, and all banks with v < vT have
incentives to contain asset risk.
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Figure 6: Risk incentives with restricted trigger asset value vT = v∗

3.2 Optimal amount of Contingent Capital

Having set vT , we now seek to optimize risk incentives by varying the amount of CoCos.

Convertible bonds have two effects on the banker’s effort for low interim asset values v ≤ v∗.
We can separate two effects: an equity dilution and a CoCo dilution effect.

Proposition 3 The potential reduction in the banker’s equity due to CoCo increases effort
incentives when risk-shifting is most severe. The value transfer from CoCo to equity may
discourage effort.

The equity dilution effect arises because the chance of conversion reduces the banker’s
share of high payoffs, reducing the return to risk shifting.8 This effect is more pronounced
for highly levered banks.

Second, conversion leads to a value transfer from CoCo to equity due to the fixed conver-
sion ratio. This may reduce effort. Figure 7 illustrates two effects.

When the amount of CoCos is so large that conversion exceeds what would be required to
eliminate all risk shifting incentives, CoCo dilution effect is excessive. Recall that effort
is both risk-reducing and value increasing. Thus, the disincentivizing CoCo dilution ef-
fect is strongest for low levered banks v ≥ v∗−C, for which the risk shifting effect is limited.

This suggests there is an optimal amount of CoCo funding, which trades off reducing risk
shifting while maintaining incentives for value enhancement.
Expected effort E(e) ireflects the range of states v when the banker exerts effort, and

equals
1+δ−v∗C

2δ
. In the Appendix we show the effect of an increase in the amount of CoCos,

disentangling equity dilution and CoCo dilution effects.

8Note that this result match the intuition in Green’s (1984) model of convertible debt. However, here
conversion is automatic and occurs earlier, before risk is fully realized.
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Equity dilution

CoCo dilution

Figure 7: Equity and CoCo dilution effects

Proposition 4 Expected effort increases with the amount of CoCos up to a threshold C∗,
and then declines. Thus, there exists an optimal amount of CoCos in terms of effort
improvement.

∆′C(v + C∗)(C∗ + vT −D)−∆(v + C∗) + z = 0 (8)

Figure 8 shows effort improvement under the uniform distribution9.

Corollary 2 The amount of CoCos and trigger value act as substitutes in reducing risk.

Thus a lower trigger value can be compensated by a higher amount of CoCos to achieve
the same risk incentives. Intuitively, a less frequent conversion can be compensated by a
larger dilution.

We next look at how key parameters on the economic environment (risky asset volatility
σ, probability of information revelation ϕ) affect the expected improvement in effort.

Proposition 5 For an exogenously given trigger value, the expected effort improvement
vT−v∗C

2δ
decreases in the volatility of risky asset (σ), since the risk shifting incentives grow

with σ.

9The graph uses the parameter values D = 0.93, z = 0.04, δ = 0.07, ϕ = 0.8.
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Figure 8: Effort improvement for different amount of CoCos

Corollary 3 Higher σ implies a higher optimal trigger value: ∂v∗

∂σ
≥ 0.

Corollary 4 A higher probability of information revelation increases the expected effort
improvement

v∗−v∗C
2δ

.

Clearly, if the state is never revealed ϕ = 0, convertible bonds never convert and thus
do not change risk incentives. An increasing chance of conversion upon revelation of high
leverage triggers conversion precisely when incentives are poor.

4 Extensions

4.1 Private choice to issue CoCo bonds

It is easy to show that banks will not be willing to issue CoCos voluntarily. Since deposits
are guaranteed by the deposit insurance fund, they can be issued at par, whereas CoCos
are risky.10 Moreover, CoCos force the banker to choose a safer strategy than she would
prefer in some cases. This decreases the banker’s return for a range of intermediate value
states.

10This result would not hold if deposit insurance fees (which we set to zero) were risk sensitive and
properly priced. In our approach, such pricing is not easy, as risk is endogenous.
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Suppose the banker may choose between the issuing CoCos of amount C at t = 0 or de-
posits of amount C. Consider the payoff of the CoCo holders. If the interim asset value v
is not revealed, this is similar to conventional bondholders. If v ≥ v∗C , CoCo holders get
the face value of the bond C, since the bank invests in the safe strategy. If v < v∗C , CoCo
holders face the risk that bank won’t repay the value of the bond fully. As the risk is not
borne by deposit insurance, it is fully priced.

It is easy to show that on average for v < v∗, CoCo holders get less than the face value of
the bond 11, although post conversion they may enjoy a capital gain as shareholders.

Figure 2 show the payoff of the CoCo holders in highly leveraged banks (v < v∗C).

As a result, CoCos are sold at the discount on their face value. Their price equals to:

PC = ϕ ·

if information is revealed︷ ︸︸ ︷
[ Prob(v > v∗) · C︸ ︷︷ ︸
safe strategy, no conversion

+Prob(v∗C < v ≤ v∗) · d

d+ 1
· E(v −D + C|v∗C < v ≤ v∗)︸ ︷︷ ︸

safe strategy, conversion

+

if information is revealed︷ ︸︸ ︷
Prob(v ≤ v∗C) · d

d+ 1
· Prob(V2 > D − C) · E(V2 −D + C|V2 > D − C, v ≤ v∗C)]︸ ︷︷ ︸

risky strategy, conversion

+

(1− ϕ)[

if information is not revealed︷ ︸︸ ︷
Prob(v ≥ v∗C) · C︸ ︷︷ ︸

safe strategy

+Prob(v < v∗C) · E(B|v < v∗C)︸ ︷︷ ︸
risky strategy

(9)

where B is the value of a traditional bond of face value C for a risky bank:

B = Prob(V2 ≥ D, v) · C + Prob(D − C ≤ V2 < D, v) · E(V2 −D + C|D − C ≤ V2 ≤ D, v)(10)

Figure 9 shows that the discount is at minimum when the CoCo amount is optimal. The
intuition is that at that point, the risk reduction is maximized, and the discount increases
with the asset risk.

Proposition 6 The banker never chooses to issue CoCos instead of deposits, since CoCos
are not insured and have a higher funding cost.12

Therefore, CoCos will be issued only if required by regulators. Note that CoCos provide
higher welfare, since the value of assets increases. The social welfare gain due to CoCos

11While CoCo holder gets less than face value at conversion because of the fixed conversion ratio, this
loss is fully priced ex ante.

12When initial capital is very high, CoCos may actually be riskless, if they always improve risk incentives
(v∗C ≤ 1− δ).
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Figure 9: Price of CoCos as a percentage of face value

equals the range of states on which the inefficient risk outcome (which has an average cost
z) is avoided:

v∗ − v∗C
2δ

· z (11)

4.2 Convertible bonds versus Debt

Are CoCos cheaper than ordinary uninsured bond?
There are two effects. CoCo bonds face less protection when converted than traditional
debt, but they induce safer asset choices. We are able to show that an optimal amount of
CoCos under some parameter values represent a less risky security than traditional bank
debt.

The difference in payoffs is shown in the Figure 10.

The value of a traditional bond with face value C is:

PB = Prob(v ≥ v∗) · C + Prob(v < v∗) · E(B|v < v∗C) (12)

The price of CoCos may be higher than for a traditional bond, when asset risk and trigger
precision are high and the amount of CoCos is chosen optimally (Figure 11)13.

Note that when the asset risk increases, the optimal trigger price on CoCo bonds should
be raised to adjust incentives. Traditional bond holders instead will passively bear the
increased risk.

13We use parameter values: D = 0.93, z = 0.04, δ = 0.07, ϕ = 0.8, σ = 0.14
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Figure 10: Expected CoCo and debt value and bounds

Figure 11: CoCo price minus bank debt around C∗

4.3 Contingent Capital versus Equity

What amount of contingent capital is required to substitute equity, to provide the same
effort incentives?
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Suppose the bank substitutes one unit of deposits by an extra amount of equity ε, or by
an amount kε of CoCos. We solve for the level of k which guarantees an equivalent im-
provement in risk incentives as with equity.14

The banker chooses effort according to the schedule:

e =

{
1 if v ≥ v∗ − ε
0 if v < v∗ − ε

(13)

The expected improvement in effort compared to basic model (24) is ε
2δ

, which reflects the
increased range of asset values for which there are improved risk incentives. From earlier
results, the improvement in effort achieved by CoCos is

v∗−v∗C
2δ

.

So the condition v∗ − v∗C = ε guarantees that the expected improvement in effort from
introducing extra equity ε and CoCos kε is the same.15

Proposition 7 The effect of CoCos on effort is in general weaker than of equity, unless
the trigger is perfectly informative (ϕ = 1).

Lemma 3 The substitution ratio k between extra equity and CoCos k decreases in a convex
way with the probability of information revelation ϕ. It reaches its minimum in the fully
informative trigger (ϕ = 1), when CoCos and equity are equivalent.

Figure 12 shows the equivalence ratio is very sensitive to ϕ. As ϕ approaches zero, the
substitution ratio becomes infinite.16 The substitution ratio increases with asset risk (for
a given vT ).

The key efficiency factor for CoCos depends on the precision of the trigger to signal a
state where incentives are poor, relatively to equity which is always risk bearing. When
the trigger is less precise, conversion takes less often when required. As a result, a larger
amount of CoCos must be used.

4.4 Debt with warrants

In this section we compare the overall risk incentive of automatic conversion against the
convertible bonds proposed by Green (1984) as a solution to risk shifting.

14Note that after adding extra equity ε, the bank has debt D− ε, so the amount of equity in the interim
stage is v −D + ε. The bank operates with lower leverage.

15As before, we set the trigger value to insure monotonic incentives in v, so d = C
vT−D = kε

v∗−D .
16The graph assumes an uniform distribution and parameters D = 0.93, z = 0.04, δ = 0.07, ε = 0.001.
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Figure 12: Substitution ratio between CoCos and equity for exogenous trigger price vT

Convertible bonds, freely convertible in shares at maturity, dilute higher risk-shifting pay-
offs, as investors always convert when asset value is high at maturity. This reduces the
attractiveness of high risk strategies.17

There are three differences between CoCos and convertibles. First, conversion is not auto-
matic. Bondholders have an option to convert into some amount of shares w. Second, the
risky payoff in Green’s model reflect a mean preserving spread.18 Finally, conversion there
occurs, if at all, only at the final stage t = 2.

We compare their effectiveness in containing risk choices and compute an equivalence ratio
with CoCos.
Consider a bank with a face value ε of convertibles outstanding, and deposits D− ε. Bond-
holders will convert into w shares at t = 2 only if they are worth more than ε, namely
when V2 > D + ε

w
.

As in Section 2, the banker chooses to control risk according to the schedule shown in
Figure 13.
v∗G and v∗∗G are defined as:

∆(v∗G)− w

w + 1
· γ(v∗G + ε)− z = 0 (14)

w · (v∗∗G −D − z + ∆(v∗∗G )− γ(v∗∗G + ε)) + ε+ z −∆(v∗∗G ) = 0 (15)

The conversion ratio w is set optimally to ensure monotonicity of bank incentives, such
that D + ε

w
= v∗∗G . As in the basic model, by assumption we ensure the monotonicity of

17However, it relies on the counterintuitive notion of increasing bank equity in the best states, as opposed
to the worse states. Voluntary conversion bonds also do not protect depositors, once the bank defaults.

18This could be easily introduced in our setting, provided we also add a (realistic) cost of bankruptcy.
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Figure 13: Risk incentives of bank with Green’s convertibles

effort incentives in v.

Proposition 8 The effect from CoCos on effort is stronger than from Green’s convertibles
for a sufficiently informative trigger, and certainly when ϕ = 1, as a lower amount is
required to provide the same incentives. The substitution ratio k increases in a convex
fashion with a lower trigger precision, and may become higher than 1.

5 Market versus Regulatory Trigger

A much debated aspect of CoCo design is whether the trigger should be based on account-
ing or market measures of bank equity, or by regulatory discretion.

An accounting trigger may fail ”to capture the true financial condition of the bank” as
in Duffie (2010). On the other hand, regulators have become skeptical of the ability of
market prices to signal risk since the crisis. Bank share prices may be considered too
noisy for at least three reasons. Prices of highly leveraged banks may rationally trade
high as shareholders benefit from large scale risk shifting. Banks may be very sensitive to
irrational exuberance and panics alike. And finally, Sundaresan and Wang (2010) showed
that conversion upon an endogenous market price produce multiple equilibria around the
trigger price, because of the share price discontinuity caused by conversion.

Currently, all outstanding CoCo bonds are designed to convert on accounting thresholds
(book equity over assets). Yet balance sheet measure may be delayed measure of value, and
are to some extent manipulable. As we showed, bankers prefers to avoid equity dilution,
as it reduces the bank put option value. Bank reporting needs therefore close monitoring
by bank supervisors, who have a critical role in challenging accounting choices that flatter
book equity. Yet regulators may defuse conversions to avoid market repercussions, and
have been known to delay recognition of bank losses in the hope of a recovery (Flannery,
2010).

We compare market and book equity triggers, where a market price triggers automatic
conversion while an accounting trigger is influenced by regulatory choice. We assume that
market prices and regulatory assessments are equally noisy indicators of real asset values.
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As before, the trigger value is set optimally vT = v∗.19

In the case of a regulatory trigger, at t = 1, the regulator observes a noisy signal of the
interim asset value ã = v + r̃ (where r̃ has zero mean and standard deviation σr), and de-
cides whether to trigger conversion. As this occurs through a bank accounting statement,
we assume that the banker observes the signal before making its risk decision.

In the case of a market trigger, at t = 1, the market price is a noisy measure of true
asset value p̃ = v + m̃ (where m̃ has zero mean and standard deviation σm) and triggers
conversion automatically if p̃ ≤ v∗. As conversion in this case is immediate, the banker
must choose its risk profile before it observes the actual market price.

We compare their efficiency when the two triggers uses equally noisy signals, assuming that
r̃ and m̃ follow uniform distribution with support [−µ, µ], where µ ≥ C.

We assume that any conversion at t = 1 causes a social cost k. This reflects a general loss
of confidence which e.g. may affect bank funding conditions. In case of bank failure at
t = 2 (when V2 < D − C), a larger social cost K is incurred. A default clearly causes a
larger loss of confidence.

The regulator minimizes total conversion costs, recognizing that an early conversion may
save the larger cost of default. Regulator’s function is (R is variable of decision convert/not
convert):

min
R
R · [Prob(V2 < D − C, ã) · (K + E(V2 −D + C|V2 < D − C, ã)) + k] +

(1−R) · Prob(V2 < D − C, ã) · (K + E(V2 −D + C|V2 < D − C, ã)) (16)

A regulator finds it rational to avoid conversion at t = 1 when default is possible but
unlikely, as long as the associated expected bankruptcy loss is lower than k̄:

k̄ = ∆(v∗ + C) + F (D − C, ã = v∗) ·K (17)

At the chosen regulatory conversion threshold, the cost of conversion equals the improved
bank value due to better incentives plus the chance of avoiding bank default at t = 2 times
its cost.

Intuitively, this will occur when regulatory estimates ã are close to the threshold v∗.
Finally, a regulator chooses not to convert if interim leverage is so high that conversion
does not improve incentives. In this latter case bank default is very likely at t = 2.

The result is that market triggers cause more unnecessary conversions, but help avoid
regulatory forbearance, which fails to trigger necessary conversions.

19While either trigger is noisy, it always produces a signal at t = 1, so the probability of revelation is
ϕ = 1.
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Proposition 9 A market trigger produces more frequent conversion than a regulatory trig-
ger, including in states when it is not necessary (type 1 error). Conversely, a regulatory
trigger will convert less, and this may encourage more risk taking in banks with v from
[v∗ − C, v∗] (type 2 error). The net effect of a market trigger may be more risk reduction
(and more equity in general) but higher conversion costs.

Figure 14 illustrates the different conversion decisions in terms of p̃ and ã. Figure 15
summarizes the different bank incentives in terms of v, where:

∆(v∗R + C) + F (D − C, ã = v∗R) ·K = k (18)

µ+ v − v∗

2µ
· [z −∆(v)] +

µ+ v∗ − v
2µ

· z −∆(v + C)

d+ 1
= 0 (19)

Figure 14: Conversion under market and regulatory triggers

Figure 15: Risk incentives under market and regulatory triggers
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The welfare gain is greater for the regulatory trigger if:

z ·
(
v∗R − (v∗ − C)

2δ
− v∗ − v∗M

2δ

)
︸ ︷︷ ︸

change in bank asset value

+ k ·
∫
v 6=[v∗−C,v∗R]

ProbR(Conv|v)dv︸ ︷︷ ︸
cost of forbearance(type II errors))

+

k ·
∫
v 6=[v∗M ,v

∗]

ProbM(Conv|v)dv︸ ︷︷ ︸
excess conversion by market trigger(type I errors)

≥ 0 (20)

where ProbM(Conv|v) and ProbR(Conv|v) are the chance of conversion for interim asset
value v under market and regulatory triggers respectively.

Relative to a market trigger, regulatory forbearance avoids conversions which are needed
but costly. It also avoids conversion for very highly leveraged banks, for which conversion
will not restore incentives. Notice that market trigger would in this case force conversion,
and would reduce losses on depositor insurance.

6 Discussion and conclusions

The paper assesses the optimal design of bank contingent capital. The literature so far
has relied on models where the asset choice is exogenous, so CoCos have no effect on risk
incentives. Pennacchi (2011) and Chen et al. (2013) study how CoCos terms affect credit
yields. While not treating formally endogenous asset risk creation, their comparative stat-
ics analysis shows how conversion decreases shareholder returns in higher risk banks. Our
contribution is to study explicitly contingent capital’s effect on bank risk choices, a neces-
sary feature for its optimal design and pricing.

We show that its effectiveness in controlling risk incentives and bankruptcy losses depends
on the precision of its trigger in converting into equity in the worse incentive states, when
leverage is very high. The intuition is that conversion contains risk shifting, as it dilutes
high returns.

Our approach establishes how the optimal amount of CoCo and their trigger level trade off
a risk reduction versus a dilution effect. It enables to assess what amount of CoCo produces
an equivalent risk reduction as common equity, as well as freely convertible bonds. It helps
clarify a key difference between bail in bonds, which convert in equity only in default, and
going concern contingent capital which restore equity while the bank is still solvent. A one
for one exchange ratio of CoCo for equity is equivalent in terms of loss absorption upon
default. But once the risk prevention effect is taken into account, even optimally designed
contingent capital is much less efficient than equity because of limited trigger precision,
which does not ensure recapitalization in all states of excessive leverage.
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We also explore the relative efficiency of different triggers, in a setting where both market
and regulatory measures of leverage are noisy. We show that a market trigger produce
more conversions, some unnecessary (type II error), and ensures on average a lower bank
leverage. A book value trigger subject to supervisory discretion instead converts too in-
frequently, as it suffers from regulatory forbearance. Forbearance is likely to occur closer
to the default threshold, as policymakers avoid an early conversion by gambling on asset
value recovery. Regulatory incentives may also be very poor for the most leveraged banks,
where incentives are not improved by conversion. For such banks more direct intervention
is necessary. In conclusion, the relative merit of price versus accounting triggers depends on
the relative cost of type I and type II errors, related to their informativeness in signalling
the need to recapitalize.

The simplified framework allows to compare various proposals in terms of risk incentives. It
echoes Flannery (2010), who argues that a stock price trigger with conversion at par avoids
regulatory forbearance and reduces manipulation. It may justify the use of more signals
to increase trigger precision. Pennacchi et al. (2011) suggest a new form of going concern
contingent capital with the market trigger by introducing an option to equity holders to
buy back the shares at conversion price. This prevents dilution of existing shareholders
and minimizes credit risk of this debt. McDonald (2011) proposes a dual price trigger,
where conversion occurs when the share price falls below the threshold, and a financial
index value is low. This allows a bank to fail as long as there is no generalized financial
distress, when it would have impact on confidence. The main advantage of these market
based triggers is to require no regulatory involvement.

Future research should focus on better understanding the effect of CoCo on share pricing,
which is distorted by risk shifting. Share prices increase with bank risk when leverage is
high, which may explain why Lehman shares peaked just a year before its default. For
this reason, shareholder returns drop on conversion, creating multiple equilibria. This dis-
continuity, driven by the tendency of the share price to fall towards the trigger level once
it comes in its neighborhood, is inappropriately named ”death spiral”. Yet it comes from
the corrective effect of CoCo conversion on an underlying distortion (i.e, risk shifting), not
from a distortion it introduces.

An open issue is whether potential CoCo conversion helps increase share pricing precision
when leverage is excessive. Once CoCos are issued, the possibility of conversion may create
downside risk. Were this to produce higher equity volatility, it would also enhance investor
incentives to monitor bank risk.
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7 Appendix

Relaxing the initial capital constraint

In our model we assume that for any interim asset value v, book equity is non-negative.
In this case the choice of the safe asset always provides the banker with a positive return,
equal to v −D. It is equivalent to the condition 1− δ −D ≥ 0.

However, if initial capital is low (the banker observes interim asset value v < D) and this
condition does not hold, the banker’s return to the safe asset changes and the banker has
different incentives to exert effort. .

In case if conversion is not triggered v ≥ vT = v∗, the banker’s return from the safe strategy
is zero, and then chooses e = 0.
If conversion is triggered v ≤ vT = v∗, the choice of the banker depends on v. If v < D−C,
the banker’s payoff from the safe asset is zero. If v ≥ D−C, the banker’s payoff is positive
and equal to v−D+C

d+1
.

The banker’s program becomes:

max
e
e · {I(v ≥ D) · [(v −D) · (I(v ≥ vT ) + (1− ϕ) · I(v < vT ))︸ ︷︷ ︸

equity value for v≥D if no conversion and e=1

+

v −D + C

d+ 1
· ϕ · I(v < vT )]︸ ︷︷ ︸

equity value for v≥D if conversion and e=1

+

I(v < D) · v −D + C

d+ 1
· ϕ · I(D − C < v < vT )︸ ︷︷ ︸

equity value for v<D if conversion and e=1

}

(1− e) · [(v − z −D + ∆(v)) · (I(v ≥ vT ) + (1− ϕ) · I(v < vT ))︸ ︷︷ ︸
equity value if no conversion and e=0

+

v − z −D + C + ∆(v + C)

d+ 1
· ϕ · I(v < vT )︸ ︷︷ ︸

equity value if conversion and e=0

]

s.t. e ∈ {0, 1} (21)

We solve the problem assuming that vT = v∗.

The banker’s incentives change when either two conditions hold: (1) v∗ < D and (2)
v∗C < D − C.

If we don’t impose any condition on v − D and the conditions defined above hold, the
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banker’s effort choice is:

e =


1 if D < v ≤ 1 + δ

0 if v∗ < v ≤ D

1 if D − C < v ≤ v∗

0 if 1− δ < v ≤ D − C

(22)

As in the basic model, it is best to ensure monotonicity of e in v. In order to incentivize
the banker to exert effort when v∗ < v ≤ D, the trigger value must be set as vT = D.

As a result, when v may be below D, but ∀v : v ≥ D − C, the banker’s incentives don’t
change if the trigger value is set optimally: vT = D. However, for all interim asset values
v below D − C, risk incentives for bank with v < D − C can not be improved.

Thus, our results will be valid for the weaker restriction of v ≥ D − C. This leaves open
the possibility of losses for depositors as V2 may be below D − C.

Proof of Statement about Convex Risk Incentives

We consider two possible distribution of the asset value: normal and uniform.

In the first case let x = v − D + ε be normally distributed with mean is v − D − z and
variance σ2. We refer to x as the difference between the value of assets and debt.

In the second case let x = v −D + ε be uniformly distributed with support [v −D − z −
σ
√

3, v −D − z + σ
√

3], so that mean is v −D − z and variance is σ2.
We assume that the highest possible equity value when the bank takes the risky asset
is positive, v − D − z + σ

√
3 ≥ 0. Otherwise, risky asset is never chosen. Moreover, the

lowest possible capital value is negative v−D−z−σ
√

3 ≤ 0, else no risk shifting takes place.

The expected value of bank equity is the expected value of assets minus debt conditional
on being solvent, multiplied by the probability of being solvent.

(1− F (0, v)) · E(x|x > 0, v)

For a normal distribution:

(1− F (0, v)) · E(x|x > 0, v) =

(
1− Φ

(
−(v −D − z)

σ

))
·
∫∞

0
x · 1

σ
· φ(x−(v−D−z)

σ
)dx

1− Φ(−(v−D−z)
σ

)
=∫ ∞

0

x · 1

σ
· φ(

x− (v −D − z)

σ
)dx =

(v −D − z) · Φ
(
v −D − z

σ

)
+ σ · φ

(
(v −D − z)

σ

)
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For a uniform distribution:

(1− F (0, v)) · E(x|x > 0, v) =

∫ ∞
0

x · 1

2σ
√

3
dx =

(v −D − z + σ
√

3)2

4σ
√

3

The expected value of equity in the case of risky asset is by definition the sum of uncondi-
tional mean of the value of asset minus debt v−D− z and the risk taking incentives ∆(v)
(the put option enjoyed by shareholders).
Normal distribution:

∆(v) = (1− F (0, v)) · E(x|x > 0, v)− (v −D − z) =

(v −D − z) ·
[
Φ

(
v −D − z

σ

)
− 1

]
+ σ · φ

(
(v −D − z)

σ

)
Uniform distribution:

∆(v) = (1− F (0, v)) · E(x|x > 0, v)− (v −D − z) =
(v −D − z − σ

√
3)2

4σ
√

3

Consider now how the risk shifting incentive changes with interim asset value v. It is easy
to show that under these distributions the derivative of the risk shifting incentive function
with respect to v is negative.
Normal distribution:

∂∆(v)

∂v
= Φ

(
v −D − z

σ

)
− 1 +

v −D − z
σ

· φ
(

(v −D − z)

σ

)
− v −D − z

σ
· φ
(

(v −D − z)

σ

)
=

Φ

(
v −D − z

σ

)
− 1 ≤ 0

Uniform distribution:

∂∆(v)

∂v
=

2(v −D − z − σ
√

3)

4σ
√

3
≤ 0

Thus, the risk shifting incentive decrease with asset value v, or capital v −D.

The second derivative of function ∆(v) with respect to v is positive.
Normal distribution:

∂2∆(v)

∂v2
= φ

(
(v −D − z)

σ

)
· 1

σ
≥ 0

Uniform distribution:

∂2∆(v)

∂v2
=

1

2σ
√

3
≥ 0

Thus, risk shifting incentives fall in a convex fashion with bank capital v −D.
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Proof of Statement about risk incentives and exogenous risk

We look at how risk incentives change when volatility of risky asset grows.
The derivative of risk shifting function with respect to σ is positive.

Normal distribution:

∂∆(v)

∂σ
= −v −D − z

σ2
φ

(
(v −D − z)

σ

)
+ φ

(
(v −D − z)

σ

)
+
v −D − z

σ2
φ

(
(v −D − z)

σ

)
=

φ

(
(v −D − z)

σ

)
≥ 0

Uniform distribution:

∂∆(v)

∂σ
=

−24σ · (v −D − z − σ
√

3)− 4
√

3 · (v −D − z − σ
√

3)2

48σ2
=

−(v −D − z − σ
√

3) · (v −D − z + σ
√

3)

4
√

3 · σ2
≥ 0

Thus, the risk shifting incentives increase with volatility of the risky asset.

And finally, we find the effect of difference in means of payoffs from safe and risky assets z
on the risk shifting incentives. The derivative of risk shifting function with respect to z is:
Normal distribution:

∂∆(v)

∂z
= −

[
Φ

(
v −D − z

σ

)
− 1

]
+
v −D − z

σ
· φ
(

(v −D − z)

σ

)
− v −D − z

σ
· φ
(

(v −D − z)

σ

)
=

−
[
Φ

(
v −D − z

σ

)
− 1

]
≥ 0

Uniform distribution:

∂∆(v)

∂z
= −2(v −D − z − σ

√
3)

4σ
√

3
≥ 0

So, higher z leads to higher risk shifting incentives.

Proof of Proposition 1

First, we show that indeed the banker with interim leverage v > v∗ exerts effort. The
banker solves the problem (4). Her decision depends on the whether the risk shifting in-
centive is higher or lower than the difference in means from safe and risky payoff z. If
∆(v) ≤ z, the banker exerts effort. According to the Assumption 1, the risk shifting in-
centive function ∆(v) is decreasing in v. Then our condition ∆(v) ≤ z implies that the
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banker with interim asset value v ≥ ∆−1(z) ≡ v∗ exerts effort.

Next we show that the probability that the banker controls risk (1−δ−v∗
2δ

) decreases with
the volatility of risky asset σ. The probability of risk control negatively depends on the
magnitude v∗. Remember that v∗ is derived from the condition G(v, z, σ) ≡ ∆(v)− z = 0.
We find the effect of σ on the critical value v∗ using the implicit function theorem and
computing

∂v

∂σ
= −∂G/∂σ

∂G/∂v

where

∂G/∂σ = ∆′σ(v) ≥ 0

and

∂G/∂v = ∆′v(v) ≤ 0

As a result the derivative is ∂v
∂σ
≥ 0. The critical asset value v∗ becomes higher if σ

increases, since higher higher volatility provides larger risk-shifting benefits. Thus, the
probability that the banker controls risk diminishes with σ.

Finally, note that the revelation of information does not have any effect on the banker’s
incentives. The reason is that information revelation makes market participants informed
about the interim asset v, but does not change the incentives of the banker, since market
does not have an instrument to affect the banker’s payoff in case of high or low risk choice.

Proof of Corollary 1

Here we demonstrate that if the trigger value is set higher than low levered bank with
v ≥ v∗ does not change the effort choice e = 1. To prove that we show the extreme case
when ϕ = 1. It is sufficient to show that if for the certain information revelation the
banker still exerts effort for v ≥ v∗. The reason is that for lower ϕ we have the banker is
more reluctant to choose effort similar to case without CoCos (there is lower probability
of conversion), i.e. e = 1.

The banker’s problem in this case (ϕ = 1, v ≥ v∗) is:

max
e
e · v −D + C

d+ 1
+ (1− e) · v − z −D + C + ∆(v + C)

d+ 1
s.t. e ∈ {0, 1}

The banker’s choice is then

e =

{
1 if v ≥ ∆−1(z)− C ≡ v∗ − C
0 otherwise

(23)
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Note that the cut-off interim asset value is now lower than v∗. It means that banks with
v ≥ v∗ still chooses to exert effort independent of ϕ.

Proof of Lemma 1

In general, the effort choice is the solution to (7) and is:

If v∗C < vT , e =


1 if v∗ ≤ v ≤ 1 + δ

0 if vT < v < v∗

1 if v∗C ≤ v ≤ vT

0 if 1− δ ≤ v < v∗C

If v∗C ≥ vT , e =

{
1 if v ≥ v∗

0 otherwise
(24)

where equation (25) defines the critical value v∗C :

ϕ

d+ 1
·∆(v + C) + (1− ϕ) ·∆(v)− z

(
1− ϕ+

ϕ

d+ 1

)
= 0 (25)

Proof of Proposition 2

We show how asset volatility affects the chosen trigger value schedule vT = v∗. Remember
that in the Proof of Proposition 1, we already demonstrated that critical value v∗ increases
with the volatility of the risky asset σ. This result implies that the trigger value vT = v∗

should be raised when volatility grows in order to avoid increased risk-shifting incentives.

Proof of Proposition 3

We demonstrate the effect of the amount of CoCos on the risk choice. First, we define
the risk improvement effect as a difference between banker’s payoff from safe and risky
strategies, i.e Safe payoff-Risky payoff

d+1
, where d = C

v∗−D is a fixed conversion ratio. The difference
is then:

v −D + C

d+ 1
− v −D − z + C + ∆(v + C)

d+ 1
=

(v −D + C) · (v∗ −D)

v∗D + C
− (v −D − z + C + ∆(v + C)) · (v∗ −D)

v∗ −D + C
=

(z −∆(v + C)) · (v∗ −D)

v∗ −D + C
(26)

The effect of CoCos on risk improvement is:

∂ (Safe-Risky)
d+1

∂C
=

(v∗ −D)[−∆′C(v + C) + ∆(v + C)− z]

(v∗ −D + C)2
=

{
≥ 0 if ∆′C(v + C) ≤ ∆(v+C)−z

(v∗−D+C)2

< 0 otherwise
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Thus, the effect of CoCos on the risk incentives may be positive or negative. It increases
as interim asset value goes down:

∂ (Safe-Risky)
d+1

2

∂C∂v
=

(v∗ −D)[−∆′′Cv(v + C) · (v∗ −D + C) + ∆′v(v + C)]

(v∗ −D + C)2
≤ 0 (27)

Moreover, effect is always positive if ∆(v + C) − z ≥ 0, i.e v < v∗ − C (since ∆′C(v + C)

is negative, inequality ∆′C(v+C) ≤ ∆(v+C)−z
(v∗−D+C)2

always holds if the right hand side is positive).

To disentangle the risk reducing effect, we assume no value transfer between equity and Co-
Cos. It is achieved only if dilution ratio depends on the asset value, i.e dC = C

E(V2−D+C|V2>D−C)
:

dC =

{
C

v−D if safe strategy
C

v−D−z+∆(V+C)
if risky strategy

Given these dilution ratios, we demonstrate that the effect of CoCos on risk improvement
is always positive if there is no value transfer:

Safe -Risky

dC + 1
= v −D − (v −D − z + ∆(v + C)) (28)

∂ (Safe-Risky)
dC+1

∂C
= −∆′C(v + C) ≥ 0 (29)

Indeed, without value transfer the effect of CoCos on the risk incentives is always positive.
It decreases as the interim asset value grows:

∂ (Safe-Risky)
dC+1

2

∂C∂v
= −∆′′Cv(v + C) ≤ 0 (30)

Only value transfer from CoCo to equity produces negative effect which is more pronounced
for low levered banks (CoCo dilution effect is larger for banks with higher asset value):

∂[ (Safe-Risky)
d+1

− (Safe-Risky)
dC+1

]

∂C
=
C∆′C(v + C)

v∗ −D + C
+

(∆(v + C)− z) · (v∗ −D)

(v∗ −D + C)2
(31)

If v is high enough, i.e v > v∗ − C (∆(v + C)− z < 0), the effect is negative.

Equity dilution and CoCo dilution effects: Numerical example

Consider a bank with debt D = 95 and initial assets V0 = 100. The risky asset return V2

follows the binomial distribution:

V2 =

{
v + 5 with prob 1

2

v − 10 with prob 1
2
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Model parameters take values: ϕ = 0.5, δ = 5, z = 2.5, σ = 7.5.

In the absence of CoCos bank with v < v∗ = 100 does not control risk, i.e bank controls
risk with probability 0.5.

Next we introduce CoCos of amount CL = 2.5, and then show how the banker’s incentives
change if the amount of CoCos increases up to CH = 5. The trigger value is v∗ = 100.

First, consider the case of CL = 2.5. The conversion ratio is dL = 0.5.
Payoff from e = 1 is:

ϕ · v −D + CL
dL + 1

+ (1− ϕ) · (v −D) = 0.5 · v − 92.5

1.5
+ 0.5 · (v − 95)

Payoff from e = 0 is:

ϕ · 1

2
· v + 5−D + CL

dL + 1
+ (1− ϕ) · 1

2
· (v + 5−D) = 0.25 · v − 87.5

1.5
+ 0.25 · (v − 90)

Bank with v > v∗C = 99 chooses to control risk in the presence of CoCos CL = 2.5, i.e bank
controls risk with probability 0.6.

Second, consider the case of CH = 5. The conversion ratio is dH = 1
2
. Then the payoffs

from safe and risky strategies are respectively:
Payoff from e = 1 is:

ϕ · v −D + CL
dL + 1

+ (1− ϕ) · (v −D) = 0.5 · v − 90

2
+ 0.5 · (v − 95)

Payoff from e = 0 is:

ϕ · 1

2
· v + 5−D + CL

dL + 1
+ (1− ϕ) · 1

2
· (v + 5−D) = 0.25 · v − 85

2
+ 0.25 · (v − 90)

Bank with v > v∗C = 98.33 chooses to control risk when CoCos is CH = 5.

Next, we disentangle equity dilution effect from the overall effect of CoCos increase. We
make the conversion ratio such that it ensures no value transfer in order to disentangle
equity dilution and CoCo dilution effects. Instead of dH = 1 we use:

dC =

{
C

v−D = 5
v−95

if safe strategy
C

E(V2−D+C|V2>D−C)−C = 10
v−95

if risky strategy

Payoff from e = 1 is:

ϕ · (v −D + CH) · (v −D)

v −D + CH
+ (1− ϕ) · (v −D) = v − 95
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Payoff from e = 0 is:

ϕ · 1

2
· (v + 5−D + CH)

dC + 1
+ (1− ϕ) · 1

2
· (v + 5−D) = 0.25 · (v − 95) + 0.25 · (v − 90)

If the there were no value transfer to shareholders, bank with v > v∗C = 97.5 would choose
to control risk in the presence of CoCos CH = 5. The effort improvement would be 0.15 due
to the increase in CoCos from 2.5 to 5. This risk reduction arises because equity dilution
reduces attractiveness of the risky payoff. We refer to this effect as equity dilution effect.

Because of lower conversion ratio dH , the dilution is at the disadvantage of CoCo holders
and advantage of shareholders. The effort improvement becomes lower.

CoCo dilution effect disincentives the banker to control risk. This effect is measured as the
reduction in effort improvement of 0.083.

Thus, equity dilution effect raises the probability of bank controlling risk to 0.75 (effort
improvement of 0.25), whereas CoCo dilution effect reduces this probability to 0.667 (effort
decrease by −0.083). Overall effect from increasing the amount of CoCos from 2.5 to 5 is
the expected effort increase by 0.067.

Proof of Proposition 4

The maximum improvement in effort is achieved when threshold for bank with CoCos v∗C
reaches its minimum. The condition for optimal amount of CoCos generating minimum
v∗C (this increases the probability of bank exerting higher effort, and thus expected effort
improvement) is:

∂v∗C
∂C

= 0

We use the implicit function theorem to compute this derivative:

∂v∗C
∂C

= − ∂F/∂C
∂F/∂v∗C

where20

∂F

∂C
=
ϕ(vT −D) (∆′C(v + C) · (C + vT −D)−∆(v + C) + z)

(C + vT −D)2

∂F

∂v
=

ϕ(vT −D)

C + vT −D
·∆′v(v + C) + (1− ϕ) ·∆′(v)

20Further we use just v instead of v∗C .
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The resulting condition is then:

∂v∗C
∂C

= − ϕ(vT −D) (∆′C(v + C) · (C + vT −D)−∆(v + C) + z)

(C + vT −D)2 ·
(
ϕ(vT−D)
C+vT−D

·∆′v(v + C) + (1− ϕ) ·∆′(v)
) = 0

From here the condition for the amount of CoCos C guaranteeing the minimum v∗C is:

∆′C(v + C∗)(C∗ + vT −D)−∆(v + C∗) + z = 0

where vT = v∗.
Note that we treat the solution of this equation as the amount of CoCos providing the
minimum v∗C , since we know that at C = 0, the function v∗C(C) is decreasing, and at
C =∞ it is constant. This suggests the existence of at least one minimum point.

lim
C→0

∂v∗C
∂C

= −ϕ (∆′C(v) · (vT −D)−∆(v) + z)

(vT −D) ·∆′v(v)
≤ 0

lim
C→+∞

∂v∗C
∂C

= 0

Proof of Corollary 2

The marginal rate of substitution between the optimal amount of CoCos and the optimal
is positive:

∂C∗

∂vT
= − ∆′C(v + C)

∆′′C(v + C)(C + vT −D)
> 0 (32)

Proof of Proposition 5

We show the effect of volatility σ on the effort improvement
v∗−v∗C

2δ
upon assumption that

the trigger value vT is exogenous. We need to find the effect of σ on the critical value v∗C ,

i.e. compute
∂v∗C
∂σ

. Using the implicit function theorem, we define it as:

∂v∗C
∂σ

= −∂F/∂σ
∂F/∂v

where we use the result ∂F
∂v
≤ 0 from the proof of proposition 4, and

∂F

∂σ
=

ϕ

d+ 1
·∆′σ(v + C) + (1− ϕ) ·∆′σ(v) ≥ 0

where we exploit the assumption 1 that ∆′σ ≥ 0.

Thus,
∂v∗C
∂σ
≥ 0.

Consequently, the effect of the asset volatility on the expected effort improvement
vT−v∗C

2δ

is negative given that the trigger value is exogenously given.
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Proof of Corollary 3

Next we examine the marginal effect from setting trigger value vT = v∗ on effort. This
effect consists of two: the effect on v∗ as an upper bound of interim asset value for which
the conversion takes place, and the effect of v∗ on the v∗C via dilution ratio d.

First effect is positive, as we already established in the proof of Proposition 1, that critical
value v∗ increases with the volatility of the risky asset σ.

Second effect is also positive for the expected effort:

∂v∗C
∂σ

=
∂v∗C
∂d
· ∂d
∂σ

= −
∂F
∂d
∂F
∂v

· ∂d
∂σ

= −
−ϕ(∆(v∗C+C)−z))

(d+1)2

ϕ
d+1
·∆′v(v + C) + (1− ϕ) ·∆′(v)︸ ︷︷ ︸

≥0

· −Cv
∗′
σ

(v∗ −D)2︸ ︷︷ ︸
≤0

≤ 0

Since volatility increases trigger value v∗, the dilution ratio diminishes. This leads to the
lower critical value v∗C .

Thus, the marginal effect is positive, and setting trigger value to be v∗ reduces the negative
effect of volatility on the expected effort (achieved with exogenous trigger price).

However, the sign of the overall effect is undefined and depends on the parameters:

∂
v∗−v∗C

2δ

∂σ
=

1

2δ
·

v∗′σ ·
(

1 +
ϕd(∆(v∗C + C)− z)
∂F
∂v

(v∗ −D)(d+ 1)2

)
︸ ︷︷ ︸

≥0

+

ϕ·∆′σ(v∗C+C)

d+1
+ (1− ϕ)∆′σ(v)
∂F
∂v︸ ︷︷ ︸
≤0


As a result, the overall effect of σ on effort may also become positive.

Proof of Corollary 4

Here we look at the effect of the higher trigger precision on the expected effort
v∗−v∗C

2δ
. The

sign of the effect is opposite to the sign of the derivative
∂v∗C
∂ϕ

= −
∂F
∂ϕ
∂F
∂v∗
C

, where ∂F
∂v∗C
≤ 0

∂F

∂ϕ
=

∆(v + C)− z
d+ 1︸ ︷︷ ︸
≤0

+ (z −∆(v))︸ ︷︷ ︸
≤0

≤ 0

The derivative
∂v∗C
∂ϕ

is negative, therefore the effect of probability of information revelation
on the expected effort is positive.
Note that critical asset value v∗ is not affected by ϕ according to the results of Proposition 1.
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Proof of Proposition 6

In order to show that banker never chooses to issue CoCos voluntarily instead of deposits,
we compare the price of CoCos PC and the price of deposits. Thus, we show that funding
with CoCos (face value C) is more expensive than with deposits of the same face value.

Price of deposits is equal to their face value C, since depositors get their money back with
certainty and deposit rate is zero.

We show that priced of CoCos is lower than C, i.e PC ≤ C.

PC = ϕ ·

if information is revealed︷ ︸︸ ︷
[ Prob(v > v∗) · C︸ ︷︷ ︸
safe strategy, no conversion

+Prob(v∗C < v ≤ v∗) · d

d+ 1
· E(v −D + C|v∗C < v ≤ v∗)︸ ︷︷ ︸

safe strategy, conversion

+

if information is revealed︷ ︸︸ ︷
Prob(v ≤ v∗C) · d

d+ 1
· Prob(V2 > D − C) · E(V2 −D + C|V2 > D − C, v ≤ v∗C)]︸ ︷︷ ︸

risky strategy, conversion

+

(1− ϕ)[

if information is not revealed︷ ︸︸ ︷
Prob(v ≥ v∗C) · C︸ ︷︷ ︸

safe strategy

+Prob(v < v∗C) · E(B|v < v∗C)︸ ︷︷ ︸
risky strategy

(33)

First, if information is not revealed, CoCos gets not higher than the face value, since in
case of D − C ≤ V2 ≤ D, they may get the value of the bond B, which is lower than face
value C:

B = Prob(V2 ≥ D, v) · C + Prob(D − C ≤ V2 < D, v) · E(V2 −D + C|D − C ≤ V2 ≤ D, v)(34)

The reason is that E(V2 −D + C|D − C ≤ V2 ≤ D, v) ≤ C.

Second, if information is revealed and there is no conversion, CoCos receive the face value.
If there is a conversion, and safe strategy is chosen by the banker, CoCos get for v∗C < v ≤ v∗

d

d+ 1
· (v −D + C) =

C
v∗−D
C

v∗−D + 1
· (v −D + C) = C · v −D + C

v∗ −D + C
≤ C (35)

If banker chooses risky strategy and conversion occurs (v ≤ v∗C), CoCo’s payoff is:

d

d+ 1
· Prob(V2 > D − C) · E(V2 −D + C|V2 > D − C, v ≤ v∗C) =

C

v∗ −D + C
· (v −D − z + ∆(v + C) + C) ≤ C (36)
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since v∗ −D + C ≥ v −D − z + ∆(v + C) + C due to ∆(v + C)− z ≤ v∗ − v.

Thus, in any possible case the value of CoCos does not exceed their face value C, and
banker considers it more expensive funding option than deposits.

Proof of Proposition 7

The banker’s program with extra equity is:

max
e
e · (v −D + ε) + (1− e) · (v −D + ε− z + ∆(v + ε))

s.t. e ∈ {0, 1} (37)

In order to compute the substitution ratio k, we use the condition for finding v∗C :

G(v∗ − ε|kε, d) = 0

or equivalently

ϕ

d+ 1
·∆[v∗ + ε(k − 1)] + (1− ϕ) ·∆[v∗ − ε]− z

(
1− ϕ+

ϕ

d+ 1

)
= 0 (38)

Here we prove that k ≥ 1. The proof is by contradiction.
Assume that k < 1. We can rewrite condition (38) as

ϕ

d+ 1
· (∆[v∗ + ε(k − 1)]− z) + (1− ϕ) · (∆[v∗ − ε]− z) = 0

Note that ∆[v∗ − ε] ≥ z, since banker with v < v∗ does not exert effort. Since the whole
expression is equal to zero, and the second term is non-negative, the first term should be
non-positive. Hence,

ϕ

d+ 1
· (∆[v∗ + ε(k − 1)]− z) ≤ 0

The expression above is non-positive only if

∆[v∗ + ε(k − 1)]− z ≤ 0

The risk shifting incentive is smaller than or equal to z only if v ≥ v∗. And if k < 1, then
v∗ + ε(k − 1) < v∗. This is a contradiction.
Consequently, it always holds that k ≥ 1, and higher amount of CoCos is required to
provide the same effect as equity.
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Proof of Lemma 3

In order to show the effect of the probability of information revelation on the substitution
ratio k, we compute first and second derivatives of k with respect to ϕ: ∂k

∂ϕ
and ∂2k

∂ϕ2 . We

apply the implicit function theorem to the condition G(v∗ − ε|kε, d) = 0. We rewrite it
using the fact that d = kε

v∗−D :

ϕ · (v∗ −D)

kε+ v∗ −D
· (∆[v∗ + ε(k − 1)]− z) + (1− ϕ) · (∆[v∗ − ε]− z) = 0

According to the implicit function theorem:

∂k

∂ϕ
= −∂G(v∗ − ε|kε, d)/∂ϕ

∂G(v∗ − ε|kε, d)/∂k

where

∂G(v∗ − ε|kε, d)

∂k
=
ϕ · (v∗ −D) · ε
(kε+ v∗ −D)2

·

(kε+ v∗ −D) ·∆′k[v∗ + ε(k − 1)]︸ ︷︷ ︸
≤0

− (∆[v∗ + ε(k − 1)]− z)︸ ︷︷ ︸
≤0

)


which is non-positive for infinitesimal ε.

∂G(v∗ − ε|kε, d)

∂ϕ
=

(v∗ −D)

kε+ v∗ −D
· (∆[v∗ + ε(k − 1)]− z)︸ ︷︷ ︸

≤0

+ (z −∆[v∗ − ε])︸ ︷︷ ︸
≤0

≤ 0

Thus, the substitution ratio falls as probability of revelation rises ∂k
∂ϕ
≤ 0.

Next, consider the second derivative of substitution ratio with respect to ϕ:

∂2k

∂ϕ2
= −

(−1) · ∂G
∂ϕ

(v∗−D)·ε
(kε+v∗−D)2

· (∆′k[v∗ + ε(k − 1)] · (kε+ v∗ −D)− (∆[v∗ + ε(k − 1)]− z))
≥ 0

This result implies that the substitution ratio k is decreasing and convex function of the
probability of information revelation ϕ.

Proof of Proposition 8

The banker’s payoff from the risky strategy is lower than in the case of non-convertible debt
by the value of the call option held by the bondholders, which we denote as w

w+1
· γ(v+ ε):

v − z −D + ∆(v)− w

w + 1
· γ(v + ε) (39)
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where the value of the call option:

w

w + 1
· γ(v + ε) =

w

w + 1
· (1− F (D +

ε

w
− v)) · E(V2 −D|V2 −D >

ε

w
) (40)

is positive and increasing in v.

If the interim asset value is high (v > D + ε
w

), shareholders will choose to convert at the
final date. The banker’s return from the safe strategy becomes then v−D+ε

w+1
. If v ≤ D+ ε

w
,

the banker’s payoff from the safe strategy is the same as in the case of non-convertible debt
v −D.

The banker’s problem is:

max
e
e · [ (v −D) · I(v ≤ D +

ε

w
)︸ ︷︷ ︸

equity value if e=1, no conversion

+
v −D + ε

w + 1
· I(v > D +

ε

w
)︸ ︷︷ ︸

equity value if e=1, conversion occurs

] +

(1− e) · [v − z −D + ∆(v)− w

w + 1
· γ(v + ε)︸ ︷︷ ︸

equity value if e=0

]

s.t. e ∈ {0, 1} (41)

The banker chooses effort according to the schedule:

If v∗∗G > D +
ε

w
, e =


1 if v ≥ v∗∗G
0 if D + ε

w
≤ v < v∗∗G

1 if v∗G ≤ v < D + ε
w

0 if v < v∗G

If v∗∗G < D +
ε

w
, e =

{
1 if v ≥ D + ε

w

0 if otherwise
(42)

We show here that the equivalence ratio between CoCos and Green’s convertible bonds is
lower than 1 (k ≤ 1), which implies stronger effect on effort is produced by CoCos.

The condition for the equivalent effect from CoCos and Green’s convertibles is:

G(D +
ε

w
|kε, d) = 0 (43)

or equivalently,

ϕ

d+ 1
· (∆[D + ε(k +

1

w
)]− z) + (1− ϕ) · (∆

[
D +

ε

w

]
− z) = 0 (44)

Note that D + ε(k + 1
w

) ≥ D + ε
w

, when k ≥ 0. For the equality (44) to hold, we need one
part of the equation to be positive and another negative. ∆(v) − z is positive for v < v∗,
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and negative for v > v∗. This implies that D+ ε(k+ 1
w

) > v∗ and D+ ε
w
< v∗. This implies

that for ϕ = 1, the equivalence condition is:

v∗ − kε = D +
ε

w

k ≥ v∗ −D
ε

− 1

w
(45)

We proof by contradiction. Assume that k > 1. Then it implies that v∗−D
ε
− 1

w
> 1,

which is equivalent to w(v∗ − D − 1) < ε. This is contradiction, since v∗ < 1 (vT < 1),
v∗ −D − 1 < 0, but ε > 0 by construction. As a result, k ≤ 1 for ϕ = 1.

Proof of Proposition 9

Consider the decision of the regulator on conversion at t = 1.

If the regulator observes 1−δ ≤ v < v∗C and triggers the conversion, the banker still chooses
risky asset. The expected loss to the deposit insurance fund is

−Prob(V2 < D − C, v) · E(V2 −D + C|V2 < D − C, v) (46)

and expected private cost to the regulator is

k + Prob(V2 < D − C, v) ·K

If the regulator does not trigger conversion, the risk choice of the banker does not change.
However, this reduces the expected private cost of the regulator to

Prob(V2 < D − C, v) ·K (47)

As a result, regulator never triggers conversion for highly levered banks with interim asset
values 1− δ ≤ v < v∗C .

If the regulator observes v∗C ≤ v < v∗ and triggers the conversion, the banker chooses safe
investment. The expected loss to the deposit insurance fund is 0, and expected private
cost to the regulator is k. If the regulator does not trigger conversion, the banker chooses
risky strategy, and there is an expected loss to the deposit insurance fund as in (46). The
regulator has an expected private cost as in (47).

Thus, the regulator triggers the conversion if

Prob(V2 < D − C, ã) · [−E(V2 −D + C|V2 < D − C, ã) +K] ≥ k (48)

where

−Prob(V2 < D − C, ã) · E(V2 −D + C|V2 < D − C, ã) =

−(v −D − z − Prob(V2 > D − C, ã) · E(V2 −D + C|V2 > D − C, ã)) =

−(ã−D − z − (ã−D − z + ∆(ã+ C))) = ∆(ã+ C)
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Thus, conversion is triggered for max[v∗C ; v∗R] ≤ ã < min[v∗R; v∗C ], where

∆(v∗R + C) + F (D − C, v∗R) ·K = k (49)

For private cost of conversion k being high enough relative to the cost of bank failure, so
that v∗R ≤ v∗.

Consider now the risk incentives under the market trigger. Banker estimates the probability
of conversion for a given v.

ProbM(conv|v) =


1 if v ≤ v∗ − µ
v∗+µ−v

2µ
if v∗ − µ < v ≤ v∗ + µ

0 if v > v∗ + µ

If µ ≥ C, v∗−C < v∗−µ, which means that banker won’t exert effort for v ∈ [1−δ, v∗−µ]
and also for v ≥ v∗ − C until the critical value v∗ − C ≤ v∗M ≤ v∗ defined by:

µ+ v − v∗

2µ
· [z −∆(v)] +

µ+ v∗ − v
2µ

· z −∆(v + C)

d+ 1
= 0 (50)

which is the solution of banker maximization problem with v ∈ [v∗ − µ, v∗ + µ]:

max e ·
[
(v −D) · µ+ v − v∗

2µ
+
v −D + C

d+ 1

µ− v + v∗

2µ

]
+ (51)

+(1− e) ·
[
(v −D − z + ∆(v)) · µ+ v − v∗

2µ
+
v −D + C − z + ∆(v + C)

d+ 1

µ− v + v∗

2µ

]
Next, we show that market trigger produces more frequent conversion than a regulatory
trigger, including in states where it is not necessary, or equivalently:

∆MR

∫ 1−δ

1+δ

Prob(Conv|v)dv > 0 (52)

∆MR is an operator of difference between welfare gains produced by market and regulatory
trigger, Prob(Conv|v) is a probability of conversion for a bank with the interim asset value
v.

Consider the efficiency of conversion for a market trigger. Market converts CoCos if
v + m̃ < v∗.
This means that the probability of conversion for banks with v > v∗+µ is zero. For banks
with max[1 − δ, v∗ − µ] ≤ v ≤ min[1 + δ, v∗ + µ], the probability of conversion is v∗+µ−v

2µ
.

CoCos in banks with v < v∗ − µ are converted with certainty.
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The expected cost of conversion is then

k ·
∫ 1−δ

1+δ

ProbMT (Conv|v)dv = k · [µ+ (v∗ − µ− (1− δ))] (53)

Next, consider the regulatory trigger. CoCos with such a trigger are converted whenever
v∗ − C ≤ v + r̃ ≤ v∗R.

Expected cost of conversion k ·
∫ 1−δ

1+δ
ProbRT (Conv|v)dv is:

k ·


v∗R − (1− δ

2
) if min[v∗ − v∗R; v∗R − (v∗ − C)] ≤ µ < δ

2

v∗R − (1− δ
2
) +

v∗R−µ−(1−δ)
4µ

· (v∗R + µ− 1) if v∗R − (1− δ) ≤ µ ≤ v∗R − (1− δ)
v∗R − (1− δ

2
) · v

∗
R−1+ 3

2
δ+µ

4µ
if µ > v∗R − (1− δ)

The expected cost of conversion is always higher for the market trigger.
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