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Abstract 

Recent literature has proposed new methods for measuring the systemic risk of financial 

institutions based on observed stock returns. In this paper we examine the reliability and 

robustness of such risk measures, focusing on CoVaR, marginal expected shortfall, and option-

based tail risk estimates. We show that CoVaR exhibits undesired characteristics in the way it 

responds to idiosyncratic risk. In the presence of contagion, the risk measures provide 

conflicting signals on the systemic risk of infectious and infected banks. Finally, we explore 

how limited data availability typical of practical applications may limit the measures’ 

performance. We generate systemic tail risk through positions in standard index options and 

describe situations in which systemic risk is misestimated by the three measures. The 

observations raise doubts about the informativeness of the proposed measures. In particular, a 

direct application to regulatory capital surcharges for systemic risk could create wrong 

incentives for banks.  
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1 Introduction 

A key goal of financial regulation is to avoid a breakdown of the financial system, or at least 

keep the probability of such an event at acceptable levels. A breakdown is imminent if many 

relevant financial institutions are simultaneously put under stress. How much an individual 

bank contributes to system risk can depend on several factors, notably the size of the bank, its 

sensitivity to shocks, and the magnitude of spillovers to other banks. While this description of 

systemic risk factors may appear too broad, narrower definitions run the risk of missing 

important aspects. Contagious losses arising from the interconnectedness of banks as well as 

other externalities may exacerbate or even create a crisis, suggesting that an analysis of 

systemic risk should focus on interactions within the system. However, such interactions are 

not a necessary condition for a financial crisis. A severe shock that affects the entire 

economy, such as a large drop in housing prices, can be sufficient to create jeopardizing 

system-wide losses.  

Though the importance of systemic risk has been discussed for many years,2 bank regulation 

has been based mainly on stand-alone measures of an institution’s risk. The recent financial 

crisis, however, has challenged trust in the underlying logic that the stability of a system can 

be adequately controlled if the stability of the system components is controlled individually. 

Reforms that are meant to overcome the shortcomings of traditional microprudential 

regulation are under discussion (see Hanson, Kashyap, and Stein, 2011). An important 

element of this is to make supervisory intensity and capital requirements dependent on a 

bank’s systemic risk contribution. 

As part of this discussion, a number of papers have proposed new empirical concepts for 

measuring systemic risk. Acharya, Pedersen, Philippon, and Richardson (2010) suggest 

examining marginal expected shortfall, which they measure through an institution’s average 

equity return on days in which the market return is below its 5% quantile. Adrian and 

Brunnermeier (2011) advocate the CoVaR measure. This is the value at risk of the system 

conditional on an institution being in distress, or, alternatively, the value at risk of an 

institution conditional on the system being in distress. Knaup and Wagner (2012) recommend 

employing information from index options. Their measure of systemic risk is the sensitivity 

of an institution’s equity returns to out-of-the money index put options. 

                                                 
2 See De Bandt and Hartmann (2002) for an early survey. 
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The purpose of the present paper is to investigate the reliability of such return-based 

measures of systemic risk. We start by examining a linear market model framework to 

explore whether the measures adequately respond to differences in systematic and 

idiosyncratic risk. While the measures’ sensitivity to systematic beta risk meets the 

expectation, the CoVaR response to idiosyncratic risk is ambiguous. In many situations, the 

use of CoVaR could create incentives for banks to increase their idiosyncratic risk in order to 

lower their estimated systemic risk.  

Next, we examine a contagion framework in which negative shocks to one bank spill over to 

other banks. Depending on the parameterization, CoVaR measures can assign a higher 

systemic risk to the infected banks, while – in the situations analyzed here – marginal 

expected shortfall and option-based measures tend to assign the highest systemic risk to the 

infectious bank. 

The problems described so far are conceptual and not due to data problems. In a next step, we 

explore how limited data availability typical of practical applications may limit the measures’ 

performance. The events that regulators are concerned about are so extreme that it is quite 

likely that the data used for estimation do not contain such an event. Extant papers 

acknowledge this problem but argue that it can be contained if less extreme events are 

sufficiently informative about crisis events, if the estimation sample is sufficiently large, or if 

market expectations about crisis events are used. 

Based on simulations, we arrive at a more pessimistic view. We generate systemic tail risk 

through positions in standard index options and describe several situations in which systemic 

risk is consistently misestimated. For example, protective put strategies that are immune to 

extreme shocks can be judged to have high systemic risk because estimation methods rely on 

less extreme return realizations in which option premia depress returns relative to unprotected 

institutions. On the other hand, tail risk can be masked by buying protection against less 

extreme events. None of the methods studied in the paper appears immune.  

In our simulations, we use return profiles that are generated through index options. 

Sometimes the profiles involve relatively large option positions. This could be taken to 

question the relevance of our results because financial institutions may not be able to build up 

such large positions, or hide them if the return-based analysis is complemented by a holdings-

based one. However, credit risk exposures also lead to non-linearities. From structural models 

(Merton, 1974) it is evident that a corporate loan or a credit default swap (CDS) includes an 

out-of-the-money put option on the borrower’s assets. Recently, Carr and Wu (2011) have 
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shown that there is a close relationship between CDS spreads and a spread between two deep 

out-of-the money puts on the borrower’s equity.  

Though we focus on the marginal expected shortfall (MES), CoVaR, and option sensitivity 

measures, these measures do not complete the list (for an overview, cf. Bisias et al. (2012)). 

Hartmann, Straetmans and de Vries (2006) and De Jonghe (2009) examine co-crash 

probabilities, a measure which is similar to marginal expected shortfall and CoVaR. Hautsch, 

Schaumburg, and Schienle (2011) propose the systemic risk beta which is conceptually 

closely related to the CoVaR. Brownlees and Engle (2011) and Acharya, Engle, and 

Richardson (2012) refine the MES concept by loss coverage through bank capital. Billio, 

Getmansky, Lo and Pelizzon (2010) use time series analysis to study interrelatedness. They 

examine autocorrelation, time variation in commonality, regime shifts and Granger causality. 

Since we examine processes with constant parameters combined with the assumption of 

efficient market prices, their methods would not help to discover systemic risk in our setup, 

which is why we cannot derive statements on their informativeness. In our somewhat 

idealized setup, which we choose in order to focus on conceptual issues, there is thus also no 

need to capture time-variation in risk, an empirical issue that is, for example, addressed in the 

work of Hautsch, Schaumburg and Schienle (2011) and Brownlees and Engle (2011).  

In a set of papers, risk assessments are based on banks’ default probabilities (Bartram, Brown 

and Hund, 2007; Huang, Zhou and Zhu, 2009; Segoviano and Goodhart, 2009). Another 

branch of the literature employs a holdings-based analysis of credit exposures, e.g. Upper and 

Worms (2004), Elsinger, Lehar, and Summer (2006), Martínez-Jaramillo, Pérez, Avila, and 

López (2010), Memmel and Sachs (2011), or Gauthier, Lehar and Souissi (2012). These 

studies are often based on bilateral exposures between banks (including repos and 

counterparty risk from OTC trading). Such detailed information allows direct modeling of the 

network externalities of a bank’s default. For example, the contagion index proposed by 

Cont, Moussa, and Santos (2012) is the expected loss of other banks, conditional on the 

default of a certain bank and macroeconomic stress. Webber and Willison (2011) also use 

bilateral exposures and derive implicit measures. They optimize the capital allocation among 

banks while keeping the VaR of aggregate losses in the system under some limit. The 

resulting capital allocation, relative to the one without interbank linkages, can be interpreted 

as a systemic risk measure. 

As practical calculations of such network based measures still require many strong 

assumptions, for example, on the clearing mechanism for interbank debt or the economic 

conditions under which an initial default occurs, there are attempts to link these measures to 
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simpler ones from accounting (size, total interbank lending and borrowing, funding) or 

network theory. Evidence on their performance is mixed. While Gauthier, Gravelle, Liu, and 

Souissi (2011) find that bank size alone is not an appropriate proxy for systemic importance, 

Drehmann and Tarashev (2001) arrive at the opposite conclusion, at least for their preferred 

measure, the Shapley value based on expected shortfall. Theoretical results supporting the use 

of the Shapley value for attributing risk are presented in Tarashev, Borio, and Tsatsaronis 

(2010). Puzanova and Düllmann (2013), who use the MES to measure risk contributions, 

agree with Gauthier et al (2011), similar to Zhou (2010), who uses the probability based 

concept of Segoviano and Goodhart (2009). López-Espinosa et al. (2012) find that, among 

large international banks, short-term wholesale funding is the key driver of ΔCoVaR, while 

size appears to be less important. 

Compared to the holdings-based approaches, which usually require data on bilateral interbank 

exposures or, at least, estimates of them, the equity-return based measures studied in this 

paper have the advantage of being based on readily observable prices.  

Regulators have agreed on assessing systemic relevance with an indicator system that does 

not factor in methods from the above literature, except for the fact that a number of the 

accounting figures used as proxy measures of systemic importance show up as relevant bank-

specific factors in the Basel documents on the identification of systemically important banks 

(Basel Committee on Banking Supervision, 2011a and 2012). However, the regulators also 

stress that the measurement of systemic risk is at “an early stage of development” (Basel 

Committee on Banking Supervision, 2011b, p. 2). 

To our knowledge, there is only one study which examines the informativeness of market-

based measures in a way that is similar to ours. Benoit, Colletaz, Hurlin, and Perignon (2012) 

theoretically analyze systemic risk measures in the model framework of Brownlees and Engle 

(2011) and find that MES and ΔCoVaR hardly provide any information in addition to that 

captured by market betas and volatilities. However, the result crucially depends on model 

linearity, while we show that nonlinearities can be significant both in the form of infection 

mechanisms and of nonlinear factor dependencies. Benoit et al. (2012) also perform an 

empirical analysis of US banks’ daily stock returns. They find a strong relationship between a 

bank’s MES and its market beta, from which one could conclude that the MES can properly 

be proxied by the beta. However, the authors compare average measures over a long period 

of ten years of daily returns. Whether a similar relationship would hold for the current 

estimates of MES and beta is unclear. Furthermore, the results are based on the commonly 

used 5% quantile level for the MES. Our analysis shows that the 5% level, which is a 



 
5

concession to data availability rather than a conceptually motivated choice, can lead to 

misleading systemic risk rankings for more extreme levels that regulators are actually 

interested in.  

The remainder of the paper is structured as follows. In Section 2, we introduce the systemic 

risk measures studied in this paper. Section 3 discusses possible problems in a linear return 

setting, while Section 4 introduces contagion. In Section 5, we examine the ability of the risk 

measures to identify systemic tail risk in a setting that is typical of practical applications. 

Section 6 concludes. 

2 Systemic risk measures studied in this paper 

Marginal expected shortfall 

The marginal expected shortfall (MES) put forward by Acharya et al. (2010) is defined as 

 i i m mMES E R R Q   , 

where iR  denotes the net equity return of institution i , mR  is the market return, and mQ  is the 

quantile of the market returns on level  . We follow Acharya et al. (2010) and examine daily 

returns with a confidence level  of 5%.  

CoVaR 

Adrian and Brunnermeier suggest measures based on what they call CoVaR, which is 

implicitly defined through 

  | ( )Pr
ij j C X iX CoVaR C X    

CoVaR therefore is the value at risk (VaR) of object j  conditional on event C  happening to 

object i . Taking the event to be that i  is at its VaR level, they suggest to examine 

 |, | .
i i i ij X VaRj i j X MedianCoVaR CoVaR CoVaR

  
     

,j iCoVaR  therefore measures the change in the  -VaR of j  conditional on i  moving from 

its median state to its own  -VaR. Adrian and Brunnermeier (2011) mostly examine the case 

in which j  is given by the overall system, i.e. a market index or a collection of banks, and i  
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is an individual institution. However, they also consider the opposite direction in what they 

call exposure CoVaR, which is defined through  

|, |systemi system system systemj X VaRj system j X MedianCoVaR CoVaR CoVaR
  

     

,j systemCoVaR  is the change in the VaR of portfolio j  conditional on the system moving into 

distress. ,j systemCoVaR  is more akin to iMES  than ,system jCoVaR . 

When we examine CoVaR’s expected performance in practical applications, we estimate it 

with a quantile regression over 25 years of weekly data, choosing a confidence level   of 

1%. This corresponds to the empirical application in Adrian and Brunnermeier (2011). In the 

conceptual analysis of Sections 3 and 4, we abstract from estimation problems by deriving 

results through closed-form expression, or Monte Carlo simulations with a large number of 

observations. 

Adrian and Brunnermeier (2011) suggest that, in the presence of time-varying risk, the 

precision of CoVaR estimates can be improved by conditioning the return-based estimates on 

current fundamental information. As we do not introduce time variation in risk parameters, 

the unconditional return-based estimates are optimal, which is why we do not model the 

conditional distribution. Another difference from the empirical approach of Adrian and 

Brunnermeier (2011) is that we examine equity returns rather than asset returns. This is done 

for the sake of exposition, as the other two measures examined in the paper are based on 

equity returns. While the choice of equity rather than asset returns can have an effect in 

practical applications, it does not affect the general results here. We model our equity returns 

as being normally distributed; this is also the standard assumption for asset returns in Merton 

(1974) type models. Thus, we could classify the returns in the CoVaR analysis as ‘asset 

returns’ and would still be in line with assumptions commonly made in the literature. 

Tail risk gammas 

Knaup and Wagner (2012) advocate the inclusion of forward-looking information available 

through market prices of out-of-the-money index put options. The sensitivity of an 

institution’s equity return to changes in put option prices is estimated through the following 

linear regression: 

t
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where tp  denotes the option price of a put on the market index.3  

The higher the estimated gamma, the higher the estimated systemic risk, conditional on the 

standard beta measure of systematic risk. In their empirical application, Knaup and Wagner 

study daily equity returns. They use put options with a maturity between three and six 

months; the average strike price is 67% of the index value. In line with their choice, we will 

use put options with a maturity of four months and a strike equal to 70% of the index value. 

3 Systemic risk measures in the linear case 

In this section, we use a linear return framework to examine whether the suggested measures 

for systemic risk fulfill elementary requirements with respect to a bank’s choice of systematic 

and idiosyncratic risk.  

Consider a banking system consisting of N  banks. In the first case that we examine, iR , the 

equity return of bank i , is determined by the exposure to a common risk factor F  and 

idiosyncratic risk i . Both factor returns and idiosyncratic components are assumed to be 

independent normal random variates. Let us further assume that the N  banks do not differ in 

their market capitalization. The value-weighted index of bank returns is therefore equal to the 

simple average of the returns. We follow Adrian and Brunnermeier (2011) and take this 

system return to be the one that takes the role of a general market index, including the MES 

and tail risk gamma analysis.  

The system and its components are described through the following equations:  

 

   
1

2 2

1
,

with ~ , ( ) , ~ 0, ( ) ,

N

i i i S i
i

i i

R F R R
N

F N F N

 

    


   
 (1) 

where F  and all i  are independent, i  denotes the exposure to the common factor, and SR  

is the return on the banking system index. To calculate measures of systemic risk, we need to 

specify conditional distributions. Due to the linearity of the system and the normality of the 

random variables, we can approach the problem in a linear regression framework.  

                                                 
3 As derived by Knaup and Wagner (2012), the denominator of the put variable is 

1tp strike   rather than 
1tp 
. 

Since we will use constant volatilities and constant strike prices, the definition of the denominator would not 

change the results. Our gamma estimates are perfectly linearly related to the gammas that would be obtained 

with the denominator of Knaup and Wagner (2012). 
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We start with an analysis of CoVaR measures. When we condition SR  on iR , we study an 

orthogonal representation 

,iiiiS vRdcR    

and obtain: 

 

2 2

2

2 2 2

2 2 2 2

1 1
( ) ( )

cov( , ) 1 ( )
1
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When we use CoVaR to study the extent to which the system is affected by bank i , we 

obtain: 

 

, 1 1

1 1

1 1
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( ) ( ) (0.5)

S i
q i i i i
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 (3) 

Let us first study the case in which all banks have the same exposure ( ) to the common 

factor but differ in their idiosyncratic risk. We can then combine (2) and (3) as follows: 

 

, 1 1 1
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2 1
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  (4) 

If a bank increases its idiosyncratic risk, there are two opposing effects on CoVaR: As 

captured in the first term within the parentheses, an increase in idiosyncratic risk increases 

CoVaR. Since the bank is part of the system, the system co-moves with the idiosyncratic 

risk of bank i , which is reflected in CoVaR. This effect becomes smaller, the lower the 

weight of the bank within the system is. 

As captured in the second term within the parentheses, an increase in idiosyncratic risk 

decreases CoVaR because higher idiosyncratic risk means that the bank’s return contains 

less information about the system. This effect becomes larger, the lower the weight of the 

bank within the system is. 



 
9

How CoVaR is affected by an increase in idiosyncratic risk therefore depends on the 

composition of the system as well as on other parameters, such as the relative magnitude of 

factor risk and idiosyncratic risk. In Figure 1, we show the CoVaR for two exemplary banks 

that differ in their idiosyncratic risk. The choice of parameters is meant to be typical of daily 

returns. Qualitatively, results would not be affected if we scaled returns to other horizons. 

Specifically, we choose uniform beta values of 1 and the following volatility parameters 

(stated as per annum figures):   0.2F  ,   0.2i    for 1N   banks, and   0.4i    for 

one bank. To translate the parameters to daily returns, we divide by the square root of 260. 

The figure shows that a higher idiosyncratic risk can have an ambiguous impact on CoVaR. 

For a small number of banks, the bank with the larger idiosyncratic risk has a larger systemic 

risk according to CoVaR because effect (i) described above dominates effect (ii). Once the 

number of banks is larger than three, the picture reverses. In this region, CoVaR suggests 

that the bank with the higher idiosyncratic risk has a lower systemic risk.  

What do these results imply for the usefulness of CoVaR as a measure of systemic risk? It 

seems plausible that higher idiosyncratic risk should be captured by CoVaR if the bank is so 

large that its idiosyncratic risk affects the system. For many banks, on the other hand, the 

second effect is likely to dominate in practice. It will be in the interests of those banks to 

increase their idiosyncratic risk because they will then be judged to have lower systemic risk. 

It is doubtful whether it is beneficial for system stability if the systemic risk measure used by 

regulators creates an incentive for banks to increase their idiosyncratic risk. 

With respect to systematic risk, CoVaR gets it right. Inspection of equation (4) shows that 

an increase in beta makes the bank have higher systemic risk as judged by CoVaR.  

We now turn to what Adrian and Brunnermeier (2011) call exposure CoVaR. For this 

measure, we condition iR  on sR  rather than sR  on iR . In our analysis, we therefore study 

 ,i i i s iR a b R u    

and obtain for a uniform  : 

 

2 2 1 2

2 2 2 2 2

2 2 2 2
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When we use the exposure CoVaR to study the extent to which bank i  is affected by the 

system, we obtain: 

 

       
       

       

, 1 1

1 1

1 1 1
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 (6) 

Let us again study the case in which all banks have the same exposure ( ) to the common 

factor but differ in their idiosyncratic risk. Inserting (5) into (6) leads to: 
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Standard calculus shows that ib , i.e. the fraction in (7), increases if any  2
i   of the single 

idiosyncratic risks increases. The same holds for  sR . As  1   is negative for the   

of interest, the whole (negative) ,i SCoVaR  is falling in  2
i  . Hence, there is now only 

one effect on CoVaR: An increase in idiosyncratic risk increases the systemic risk attributed 

by CoVaR. The intuition is that higher idiosyncratic risk means that the system’s return 

contains less information about the bank in question. This effect becomes weaker, the lower 

the weight of the bank within the system is. Thus, the problematic effect discussed above 

does not arise. As before, changes in systematic risk lead to the desired effect, i.e. the 

exposure CoVaR attributes a higher systemic risk. 

The next measure considered is the marginal expected shortfall (MES): 

  i s SMES E R R Q   

As in exposure CoVaR, a bank’s return is conditioned on the system return. We therefore 

start by using the market model structure from above, ,isiii uRbaR   and obtain 

   
   

i s S i i s i s S

i i s s S i s S

MES E R R Q E a b R u R Q

a b E R R Q E u R Q

 

 

     

    
. 

By construction of an OLS regression, iu  and sR  are uncorrelated. Because their joint 

distribution is multivariate normal (both are linear images of independent normals), they are 

independent, so that  i s SE u R Q  is zero. We therefore obtain 
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 i i s s SMES a b E R R Q    

where  s s SE R R Q  can be determined using familiar results for truncated normal 

distributions. 

In Appendix A we show that adding idiosyncratic risk increases the systemic risk as 

measured by MES, as does an increase in systematic risk. The MES measure does not exhibit 

unwanted characteristics with respect to the choice of risk in the chosen setting. 

The third measure that we focus on in this paper is the tail risk gamma. In the linear case 

studied in this section, the market model, which is nested in the tail risk gamma approach, 

provides the best possible description of a bank’s return. The expected tail risk gamma is 

therefore zero irrespective of the choice of idiosyncratic risk and systematic beta risk, which 

means that we cannot derive statements on tail risk gamma properties within the setting of 

this section.  

4 Systemic risk measures in the contagion case 

After studying linear return relationships within a simple one-factor model, we now turn to 

examining contagion effects. An overview of different contagion definitions is given in 

Pericoli and Sbracia (2003). The main definition that we examine is one in which contagion 

is brought about by spillovers of idiosyncratic shocks.   

Assume that the returns of the banks and the system evolve according to  

  1

1 1 1

2 1

,

, 2,...,

1

j j

s j
j

R F

R F I j N

R R
N

 

 
   

 
   

 

 (8) 

That is, there is contagion from bank 1 to the other banks in the system. If bank 1 is afflicted 

by a realization of idiosyncratic risk that is worse than , other banks are partially affected, 

too. Other assumptions regarding the distribution of F  and the j  are the same as above, i.e. 

they are independent normal variates. Since the dependence structure is now considerably 

more involved, we resort to Monte Carlo simulation to derive statements about systemic risk 

measures. To isolate the effects of contagion, we study a case in which the infectious and the 



 
12

infected banks do not differ in their variances. To this end, we need to determine the variance 

of  1 1I    : 

                

      

    

1 1 1 1 1

2 22
2

1 1 1 1 1

2
2

1 1 1 1 1 1
1 1

2

1 1 1 1
1 1

var

var
( ) ( )

var
( ) ( )

I E I E I E I E I

E E

E

             

         
   

      
   

    
     
 

                      
    

         
    

 

Both conditional moments can be calculated using familiar results for truncated normal 

variables.  

We determine the systemic risk measures using 50 million simulated return observations for 

each bank, which also implies simulated values for the system return RS. To increase 

precision, we use antithetic sampling for the factor returns and idiosyncratic shocks. When 

calculating CoVaR, we need to condition on the VaR, which is observed with measure zero 

in the simulations. We therefore employ an interval around the VaR for conditioning. 

Specifically, we condition on the observations in the interval defined by the  0.2%q  and 

 0.2%q  quantiles of the simulated data. The 
1

1|
01.0

qVaRRSCOVAR  , for example, is determined 

as follows: select the runs in which the return 1R  lies between the 0.8% and 1.2% quantile of 

1R , and determine the 1% quantile of sR  for this selection. The exposure CoVaR is 

determined accordingly. 

The MES is determined as the average simulated return of a bank given that the simulated 

system return is below its 5% quantile. 

The tail risk gamma is based on a regression of the simulated bank returns on the simulated 

system return and the change in out-of-the-money put options written on the system index. 

Similar to Knaup and Wagner (2012), we study options with a maturity of four months and a 

strike price equal to 70% of the index level. Put option prices are determined using Monte 

Carlo simulation and risk neutral valuation. We need to determine new put option values for 

the one-day-ahead index levels that occur in the simulations. With the parameters chosen 

here, there is no one-day system return outside the interval [–0.1, 0.1]. For each index value 

in [0.9initial index value, (0.9+0.0001)initial index, … , 1.1initial value] we use Monte 

Carlo simulations to determine the value of a put option, whose maturity has by then changed 
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to four months minus one day. For the analysis, the simulated index value is paired with the 

closest index value for which a put option price has been determined. 

As in the previous section, the simulation is conducted using assumptions typical of daily 

returns. Beta values are uniform, 1 1j   , and the following per-annum drift and volatility 

parameters are chosen:   0.2F  ,  1 0.2   ,        1

0.5
2 2

1 1varj I          for 

all 1j  , and   0.05E F  . The risk-free rate is set to 0.02. To translate the parameters to 

daily returns, we divide by 260 in the case of  E F  and by the square root of 260 in the case 

of standard deviations. The number of banks is set to 50N  . The contagion threshold  is 

set to either –0.0204, –0.0289 or –0.0383, corresponding to the 5%, 1%, and 0.1% quantile of 

1 . The responsiveness to contagion,  , is set to either 0.75 or 0.25. 

Results are reported in Table 1, which shows that CoVaR measures do not provide a clear 

identification of contagious banks. Depending on the contagion threshold, the contagion 

intensity, as well as on the direction of the CoVaR measure, the bank that is infectious can 

be assigned a lower or a higher CoVaR than the bank that becomes infected. The difference 

is most pronounced in Panel A, which assumes strong contagion effects for idiosyncratic 

shocks below their 5% quantile, i.e. a case in which the region used for conditioning will 

include many instances of contagion.  

This result is surprising since a strong idiosyncratic loss incurred by the infectious bank 

causes substantial losses for all other banks and hence for the system. Such a contagion can 

be expected to appear more often in the event    R
1 1 1
R Q R  than in 

   R j j jR Q R , where j  denotes any of the infected banks. These are the conditioning 

events of the CoVaR. We would therefore expect the system’s risk to be rather large when 

conditioning on 1R , compared to conditioning on jR , where contagion is less frequent.  

To get an intuition why we find the opposite, Panel A of Figure 2 plots the system return 

against the return of the infectious bank and the return of an infected bank, respectively, 

choosing parameters as in Panel A of Table 1. Conditional on the bank returns being at their 

1% quantiles, the system return has a larger variance in the case of the infected bank, which 

leads to a more extreme CoVaR. The explanation for the difference in the variances is found 

by splitting up the events 1R  and jR  into the cases with and without contagion.  
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Panel B plots instances of contagion, which we subsume under  1  C . The left-hand 

graph shows a strong (C -conditional) correlation between 1R  and the system return so that, 

once 1R  is fixed at its quantile, SR  exhibits only low variation. The reason for the high 

correlation is that the bank’s idiosyncratic risk has spread through the system. To show this 

formally, consider 1 R C . The first line of (8) then gives   1
1 1F Q R   , which we 

can plug into the second line to eliminate F  in the representation of jR . Averaging over 

individual returns, the system return now reads  

  1 1
2

1 1 1 N

s j
j

N
R Q R

N N N    


       


.
 (9) 

Its variance is low because the first term on the right-hand side is deterministic, the 

coefficient in brackets is small for large N  given   and   are not too different, while 1  has 

low variance under C  anyway, and the third term is diversified over independent risks and 

hence of low variance, too. In contrast, no such strong relationship between system and 

individual return exists if an infected bank is in distress. Rewriting the system return in the 

same manner as above gives, under j R C , 

   1
2

1 1 1 N

s j i j
i

N
R Q R

N N N     


            
  (10) 

with a similar structure, except for the last addend. This term bears substantial variation 

relative to the others and is the reason why the standard deviation of sR  under j R C  is 

considerably larger than under 1 R C .  

Realizations without contagion are plotted in Panel C of Figure 2. While the graphs indicate 

differences in the joint conditional distributions, the latter are similar in the part relevant for 

the ΔCoVaR. To see this more clearly, consider the counterparts to (9) and (10) in the 

absence of contagion, which are 

  1 1
2

1 1 N

s j
j

R Q R
N N   



         
  

for 1R \C  and  

   1
2

1 1 N

s j j i
i

R Q R
N N   
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for \jR C . The expressions in brackets in both formulas are not identical as 1  is bounded 

from below (we are in the non-contagion case) while j  
is not. However, the distributions of 

1  and j  are quite similar for positive realizations so that the conditional distributions of sR  

are similar on the negative half, which is the part relevant for ΔCoVaR. 

Having analyzed the risk of sR  with and without contagion separately, we now put both cases 

together. We observe that the low variance of sR  under 1 R C  (compared to j R C ) is not 

offset by an opposing relationship in the non-contagion case ( 1R \C  vs. \jR C ), where the 

relevant parts of the distribution are fairly similar. Even if contagion were equally frequent 

under 1R  and jR , we would thus observe that the CoVaR of an infected bank is more 

negative than the CoVaR of the infectious bank. In fact, contagion is more frequent under 1R  

so that the total effect is even stronger. 

As demonstrated by this example, contagion can cause complex return patterns which make it 

difficult to identify the infectious bank with a CoVaR-type measure.  

One might suspect that the ambiguities associated with CoVaR arise from problems 

associated with value at risk, and that they can be eliminated by moving to co-expected 

shortfall (CoES). However, further analysis shows that this is not the case. For example, 

when we implement the CoES as suggested by Adrian and Brunnermeier (2011) for the 

parameters of Panel A, the CoES is –1.92% for the infectious bank and –2.57% for the 

infected bank.  

In each of the cases studied here, MES and tail risk gamma, by contrast, assign a higher 

systemic risk to the infectious bank. Both measures appear to be more robust because they do 

not focus on a single quantile of a distribution but on a range of quantiles. If contagion leads 

to extremely negative returns, MES will pick it up because it averages across the bad days of 

the market, while the tail risk gamma picks up the concavity that is generated by the 

contagion effects. 

There might be other contagion structures in which these measures provide different rankings 

of contagious and infected banks. We have examined the following structures and found 

similar effects as in Table 1: 

(i) We modeled volatility spillovers: If the idiosyncratic risk of the contagious bank falls 

below , the idiosyncratic risk of the infected banks is m times higher than in the base 

case. The base case volatility is again chosen such that the total volatility of the 
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infected banks equals the one of the infectious bank. Assuming 2.04%    and 

3m  , which we choose based on return behavior surrounding the Lehman crash,4 the 

CoVaR values are –2.09% and –2.36% for the infectious and an infected bank, 

respectively. MES assigns a higher risk to the infectious bank. 

(ii) We modeled a spillover of returns rather than a spillover of idiosyncratic risk: If the 

return of bank 1 falls below  , an amount of   is added to the return of the infected 

banks. With 2.89%    and 0.75   the simulated CoVaR values are –5.07% and 

–5.38% for the infectious and an infected bank, respectively. MES now also assigns a 

higher risk to the infected banks. 

It is worth noting that the differences in MES and tail risk gamma appear to be relatively 

small in some cases. Given that the infectious bank in the example has a strong influence on 

other banks, one would perhaps expect larger discrepancies. The MES difference of –3.10% 

versus –2.94% in Panel A of Table 1 has the same size as the MES difference between two 

non-infectious banks that have betas of 1 (MES = –2.74%) and 1.07 (MES = –2.56%), 

respectively. While regulators would probably view the infectious bank with great suspicion 

(if they knew about the infection mechanism as modeled here), they probably would not pay 

the same attention to a beta difference of 0.07.  

We conclude by noting that it is not necessarily obvious from a regulatory perspective 

whether a systemic risk measure should assign a higher risk to contagious banks. In the 

presence of contagion, financial stability can be increased by imposing stricter standards on 

contagious banks, thus reducing the likelihood and magnitude of contagious events. 

However, it could also be increased through stricter standards for infection-prone banks, i.e. 

by reducing the consequences of a contagious event. The lesson to be drawn from this section 

is therefore not so much that some measures correctly identify contagion while others do not. 

Rather, it shows that risk measures can provide conflicting risk rankings, and that even 

simple contagion structures can be difficult to identify.5 

                                                 
4 For the 29 depositary institutions listed in Acharya et al. (2010, Appendix A), we examined the idiosyncratic 

volatility over the 30 days ending on September 12, 2008 as well as over the 30 days starting on September 15, 

2008 (Lehman collapse) . Using a one-factor model with the S&P 500 as the factor, the median idiosyncratic 

volatility increases by a factor of 2.98. 

5 Identification problems also arise in the standard correlation-based analysis of contagion, cf. Pesaran and Pick 
(2007). 



 
17

5 Empirical robustness of tail-risk measurement 

5.1 Measurement issues 

The main interest of financial regulators lies in extreme events. Acharya et al. (2010, p.15) 

“think of systemic events […] as extreme tail events that happen once or twice a decade (or 

less), say.” On a daily frequency, this corresponds to events occurring with a probability of 

less than 0.1%. In a typical sample available for estimation, such events are either not 

observed, or their number is so small that it is difficult to base statistical inference on the 

extreme events only. The literature is aware of these problems and suggests the following 

solutions.  

Acharya et al. (2010) examine events that occur with a probability of 5%. With the help of 

extreme value theory and assuming power law distributions, they show that the ultimate 

object of interest, which they call systemic expected shortfall, is linearly related to the 5% 

MES as well as other variables. If return distributions are similar and of the kind assumed by 

Acharya et al., this promises that the order of iMES  in a group of banks does not change 

strongly if the tail probability is raised from, say, 0.1% to 5%. Adrian and Brunnermeier 

(2011) suggest using a large sample of historical returns in order to include as many extreme 

events as possible. Since the risk characteristics of financial institutions can change over 

time, they study not only unconditional risk estimates, but also estimates of the conditional 

distribution as a function of state variables. Knaup and Wagner (2012), finally, try to 

circumvent the data problem by utilizing the information contained in put prices. 

For the following reasons, some skepticism appears to be in order. The theoretical results 

presented by Acharya et al. (2010) rest on the assumptions made in their paper and do not 

hold in general. We will show that the relationship between MES and extreme risk can break 

down if portfolios include standard option positions. Adrian and Brunnermeier (2011) face a 

similar challenge. Even 25 years of data may not be enough to identify co-movement in very 

extreme scenarios. Note that in the examples studied here, there is no time variation in risk 

parameters, which is why we do not model the conditional distribution. The use of put 

options in Knaup and Wagner (2012), finally, expands the information set by including 

market expectations about extreme events. If such expectations do not change significantly 

over the estimation sample, however, there is again only little information that can be used to 

estimate the object of interest. As the examples show, the tail risk gamma of Knaup and 

Wagner (2012) faces a problem similar to that of the other two measures. Gamma estimates 
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may predominantly be based on less extreme changes in market expectations, and there is no 

guarantee that there is a robust link between a portfolio’s sensitivity to very extreme and less 

extreme changes, respectively. 

5.2 Some archetypical portfolio structures 

We examine the risk measures’ robustness by determining them for a number of portfolios 

that differ in tail risk. These differences are engineered through positions in standard options 

as well as differences in beta risk. For simplicity, we perform calculations in a Black-Scholes 

world with lognormally distributed market index returns. We assume a risk-free rate of 2% 

and a stock market volatility of 20%. To approximate individual portfolios, we assume an 

idiosyncratic volatility of 20%. Portfolios differ in their betas and in option positions. 

Without options, the portfolio return of institution i  from 1t   to t  would be 

 it f i mt f itR R R R     , 

where fR  denotes the risk-free rate, mR  the market return, and it  is the idiosyncratic risk 

with a variance of 20.2 / 260 . We refer to a portfolio without options and 1   as the 

baseline portfolio.  

At the end of each day, various put options with a maturity of 30 days are bought or sold, 

indexed by j  and each with a (positive or negative) weight ijw  relative to the portfolio value 

without options. If aggregate option weights are positive, funding is obtained at the risk-free 

rate; otherwise the obtained cash is invested in the risk-free asset. The option positions are 

unwound at the end of the following day. 

Let  , ,p S K S d  be the Black-Scholes price of a put option if the price of the underlying is 

S , for a time to maturity of d  days and a strike price K S . Normalizing the index price to 

one, the return of a portfolio from 1t   to t  obtains as 

   
 

1 , ,29
1 1

1, ,30

mt ij

it ij f i mt f ij it
j j ij

p R K
R w R R R w

p K
 

  
             

   

We analyze the performance of systemic risk measures for four archetypical pay-off 

structures, denoted by A to D. In each setting, there are 16 portfolios which share the same 

archetypical structure but differ in their risk. The first portfolio is always equal to the baseline 

portfolio. 
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In setting A, portfolios do not contain options. They differ in their betas, which linearly 

increase from β = 1 for portfolio A1 to β = 2 for A16. Figure 3 plots the market return against 

expected portfolio returns, conditional on the market return, for portfolio A16 and the 

portfolios No. 16 of the other types. 

In setting B, portfolio No. 16 has short positions in out-of-the-money put options (weight 

0.45% , strike 0.8), which are balanced with long positions in at-the-money put options 

(weight 3%). This produces a concave return profile (Figure 3). Compared to the market 

portfolio (gray line), the portfolio generates smaller losses on days with a moderately 

negative market return, leaving aside idiosyncratic risk. Assuming a drift rate of 5%, the 5% 

quantile of the market return is –2%. In such an event, the portfolio performs better than the 

market. Its performance drops below the market when the market return hits –2.5%. With the 

assumed distribution, this happens with a probability of 2.1%. On the way from portfolio B16 

to portfolio B1, option weights are linearly reduced to zero while betas linearly step down 

to 1. 

In setting C, out-of-the-money put options (weight 0.75%, strike 0.8) provide protection or 

even overprotection against large losses, while an increase in betas provides upside 

participation. Due to its high beta and the put being far out of the money, Portfolio C16 is 

comparable to the baseline portfolio with a leveraged systematic component, as long as 

returns are moderate. Observing such moderate returns suggests that the portfolio is riskier 

than in the baseline. If losses in the market index are large, however, the protection provided 

by the put overcompensates losses in the market component (at a probability of 1.23%, if 

2.8%mR   ) and can even generate profits (with a probability of 0.06%, if 4%mR   ). On 

the way from portfolio C16 to portfolio C1, option weights are linearly reduced to zero, while 

betas are linearly reduced to 1.  

In setting D, two put options are included, and the beta of 1.375 for portfolio D16 is only 

slightly increased against the baseline portfolio. The long put position that is less far out of 

the money (0.725) has quite a heavy weight of 5.7% and so sets a nearly perfect floor on the 

losses in the systematic component. This works as long as mR  does not fall short of 2.8% . 

If it does, the second, short put option position (strike 0.7, weight –4.5%) gains impact and 

generates dramatic losses. A key difference between the profiles of setting D and those of the 

other settings is that the return profiles in D are not globally concave or convex. This 

complicates inference about extreme losses. On the way from portfolio D16 to portfolio D1, 

option weights are again linearly reduced to zero, while betas are linearly reduced to 1. 
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Errors in estimating the systemic tail risk of portfolios can arise for various reasons. First, the 

relationship between portfolio payoffs and systemic factors may be so nonlinear and even 

non-monotonic that risk measures for different loss severities are only loosely connected. 

Second, estimations can be noisy due to sampling error, and, third, the estimators may be 

misspecified, for instance, by assuming nonlinear dependencies to be linear. We examine 

these errors separately. In Section 5.3, we use precise MES and CoVaR under varying tail 

probabilities to analyze how well low-probability risk measures can be inferred from 

medium-probability ones. As estimation errors are excluded, the results provide an upper 

bound for the quality that can be achieved in reality. In Section 5.4, we perform a simulation 

exercise where MES, CoVaR, and tail risk gamma are estimated under realistic conditions.  

5.3 Comparing exact risk measures for different confidence levels  

For all portfolios from A1…A16 to D1…D16 we calculate precise MES and both types of 

CoVaR at confidence levels of 0.1%, 1%, 5%, and 10%. With our assumptions, the 

exposure CoVaR can be computed analytically, while MES and ΔCoVaR are determined 

through numerical integration. The 0.1% confidence represents the object of interest as it 

corresponds to a probability with which systemic events occur. A 1% confidence is used in 

the CoVaR estimations of Adrian and Brunnermeier (2011), while Acharya et al (2010) 

suggest choosing the 5% MES as a proxy for the unobservable systemic expected shortfall. 

The tail risk gamma approach of Knaup and Wagner (2012) does not lend itself easily to a 

similar exercise. We could study gammas for different choices of moneyness. However, 

Knaup and Wagner already choose options that are deep out-of-the-money, corresponding to 

very extreme events.  

Separately for each setting, and singling out four portfolios, exact MES and CoVaR for 

different confidence levels are presented in Figure 4. Not surprisingly, risk measures of the 

portfolios in setting A are in the expected order according to the varied beta. In Appendix C 

we demonstrate that an extrapolation from 1%, 5%, and 10% to 0.1% performs well.  

Things are different for setting B. Running from B1 to B16, the MES curve more or less 

rotates around the values for a confidence level of 1%. The variation in the 0.1% MES is 

strongest. This “rotation” means that the proposal by Acharya et al. (2010) to choose the 5% 

MES as a proxy would fail; precisely the wrong order would be predicted. The result for the 

exposure ΔCoVaR is very similar. The shape of the curves suggests trying an extrapolation: 

assuming that the MES at 1% or higher could be estimated with great precision, it seems that 



 
21

an extrapolation might work well because the convexity of each curve at 5% nicely 

corresponds with the convexity at 1% (see Appendix C).  

The ΔCoVaR does not fit into the pattern. It assigns the lowest systemic risk to the most risky 

portfolio B16 – but now on all confidence levels. To get an intuition why, let us mimic the 

concave structure of the portfolio by a simpler, piecewise linear profile with a kink in k : 

 
 kink 1 :

:
i m i i m

i
m i m

R k R k
R

R R k

  


    
 

 
 (11) 

We assume in this example, for ease of exposition, that returns are not lognormally but 

normally distributed, with zero drift and equal variance:  20,mR N :  and  2~ 0,i N  . 

This is a very small adjustment.6 

If i  is larger than 1, the profile is similar to a buying portfolio with a beta of 1, plus writing 

short-term put options with strike k .  

We compare the CoVaR of this kinked profile to a portfolio that is linear in the market 

portfolio, with a beta of one and the same idiosyncratic risk as in the kinked portfolio. The 

return on this linear portfolio is thus m iR   and is denoted lin
iR . As in Section 3, we derive 

an orthogonal representation of the market risk factor lin0.5m iR R    with   2 / 2    

(here we utilize    m iR      and hence  lin 2iR  ). Conditioning on lin
iR  is now 

straightforward and provides us with  

          lin lin lin 11 2
|

2 2m i i iQ R R Q R Q R Q Q            
 

When we condition on the median, this simplifies to: 

         lin lin lin
0.5 0.5

1

2m i i iQ R R Q R Q R Q Q        (12) 

where  lin
0.5 0iQ R   so that 

      lin 12
0.71 .

2m i mCoVaR R R Q R      (13) 

                                                 
6 Daily returns with 20% (annual) volatility have such a small standard deviation that the lognormal and 

normal distributions are very similar. The largest deviation between distribution characteristics relevant 

here occurs between the 0.1% quantiles; they differ by factor 1.02. 
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Now consider an extreme case in which the i  of the kinked portfolio is very large and k  is 

in the left tail of the distribution of mR  but less extreme than the  -quantile. In this “kink” 

case it holds approximately that 

    kink kink
m i i mQ R R Q R Q R     

because the distribution of kink
iR  in the left tail is almost fully determined by the market 

return if i  is large. If kink
iR  is at its  -quantile, we can then infer almost perfectly that the 

market is at its  -quantile as well.  

For determining the CoVaR conditional on kink
iR  being at its median, we distinguish two 

cases:  

In case one, the condition that the portfolio return must take on its median value compresses 

the distribution of the market return more or less completely onto the range above the kink. 

This is true if 

     lin lin
0.5

2
Pr Prm i i

k
R k R Q R k 


 

      
 

=  (14) 

Then it does not matter much for the CoVaR whether there is some kink below the relevant 

range so that kink
iR  and lin

iR  have a very similar CoVaR of approximately  Q  . Taking 

(12) into account, we conclude 

       kink 0.29m i m mCoVaR R R Q R Q Q R      , 

which is less extreme than the ΔCoVaR in the linear benchmark case, despite the fact that the 

downward kink can imply considerable exposure to systematic tail risks.7 

In case two, (14) is not fulfilled so that the kink does play as role for the CoVaR calculations. 

Then we find the approximation 

  kink kink
0.5m i iQ R R Q R k    

                                                 
7 For parameters that bring the kinked profile close to portfolio B16 (for instance, 0.035, 7ik    ), .we 

determined the 0.1% CoVaR through simulations; they confirmed that the approximation correctly captures 

the ordering of the CoVaR.  



 
23

which holds because iR  is very unlikely to be at its median if mR  is below k . If mR  were 

below k , the high beta would push iR  so far away from its median that idiosyncratic risk 

could not bring it back, except in very rare cases. ΔCoVaR thus approximately is 

   kink
m i mCoVaR R R Q R k   , 

the size of which can now exceed the one in the linear case: if   shrinks, ΔCoVaR in the 

kink case decreases at the same speed as  mQ R , in contrast to  0.71 mQ R  in the linear 

case, as shown in (13). But still there is a substantial range, approximately if 

   1 0.71 mk Q R  , where the ΔCoVaR of kink
iR  has a smaller absolute value.  

To summarize our example, adding a downward kink to the portfolio’s market sensitivity in 

the lower tail may “confuse” the ΔCoVaR in an undesirable way: less systemic risk is the 

consequence of more downward exposure. In Appendix B, we generalize the kink example to 

smooth nonlinearities. When the risk profile is established by a monotonic function h  so that 

 i m iR h R   , we argue that the CoVaR is almost exclusively driven by the steepness of 

the profile in the lower tail, i.e., by the derivative   ' mh Q R , and often in the undesirable 

way, as observed for the kink example. 

The sequence of portfolios in setting C gives a similar picture as in setting B: risk measures 

switch the order if the tail probability is changed, but the MES switches between points other 

than those where CoVaR switches. At the 1% level, MES and CoVaR give a correct 

prediction for the order of 0.1% risk measures. If 1% estimates are not accessible, so that one 

has to rely on higher probability levels, capital surcharges based on such measures would 

create wrong incentives – the larger the hedge in the tail, the more it would be “punished” by 

increased capital requirements. Similar to setting B, extrapolation works well (see 

Appendix C). 

If the portfolio profile is more complex, as is the case with setting D, prospects for inferring 

the 0.1% risk measures from the others are even worse. The order of risk measures switches 

below a 1% tail probability and hence within a de facto unobservable region. While the MES 

curves still seem to be accessible to extrapolation (note that variation in convexity at 5% is 

low, however), this cannot be said about the CoVaR curves. They are virtually straight 

between 1% and 10%, so that little if nothing can be learned from these points about the 

convexity at 1%. In Appendix C we show that our extrapolation fails. 
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It is remarkable that, as in setting B, ΔCoVaR assigns the lowest risk to the portfolio with the 

largest short-put positions. Due to the trough-shaped profile for moderately negative returns, 

the effects are more involved than before, and the CoVaR under the median condition 

contributes as much to the effect as the one under the tail condition (unreported). However, 

the arguments of Appendix B can be applied to the latter at least: when conditioning on an 

extreme quantile, the CoVaR is almost exclusively driven by the steepness of the profile in 

the lower tail, and the CoVaR’s size may shrink while the profile in the tail becomes steeper. 

This happens in the transition from portfolio D1 to D16. 

5.4 Estimation under realistic conditions 

To examine how well the four measures would discriminate between low-risk and high-risk 

portfolios in a practical application, we conduct a simulation study. To facilitate 

interpretation, the analysis is conducted separately for each portfolio setting (A, B, C, or D). 

The analysis has the following structure: 

(1) Choose one of the four portfolio settings A, B, C, or D.  

(2) For the market return and the 16 portfolios of the setting chosen in (1), simulate daily 

returns using the assumptions and portfolios from Section 5.2. For the CoVaR 

computations, aggregate five daily returns to one weekly return. 

(3) Determine the risk measures in line with the choices made in the literature: 

MES:    260 days, 5% confidence level  

CoVaR:   1,300 weeks, 1% confidence level 

Exposure CoVaR: 1,300 weeks, 1% confidence level 

Tail risk gamma:  260 days, put with maturity 4 months and strike 70% 

(4) Repeat steps (1) to (3) 1,000 times. 

Figure 5 plots average estimated risk ranks across the 1,000 trials, along with 90% confidence 

intervals, against the true risk rank. A perfect system, which always identifies the correct 

systemic risk, would imply a diagonal performance line with a zero-width confidence 

interval. For each of the four measures, the true risk rank is based on the 0.1% MES or 0.1% 

exposure CoVaR, which generate the same ranking. The previous section has shown that 

CoVaR reverses these rankings for portfolio settings B and D, but it has also shown that this 

reversal should be attributed to a particularity of the CoVaR definition rather than to 

differences in systemic risk. For this reason, we compare the estimated CoVaR ranks 
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against the true risk ranks implied by MES and exposure CoVaR. We do the same for the 

tail risk gamma, which is an empirical measure that involves the choice of certain put 

options; it cannot be used directly to infer a correct risk ranking for some confidence level. 

In Setting A, in which portfolios differ only by their beta, the MES and the two CoVaR 

measures manage to identify the correct risk rank on average. The width of the 90% 

confidence intervals is around five for MES and exposure CoVaR, meaning that most 

incorrect ranks differ by less than +/– 3. CoVaR provides a less reliable ranking but also 

gets the ranking right on average. In contrast, the performance line of the tail risk gamma is 

flat, which implies that a random ordering would perform equally well. Since the gamma 

measures tail risk after controlling for market beta, however, this is what we would expect. 

The return profile is linear, so there is nothing left that could be detected by the gamma. 

When combined with the standard beta estimate, the gamma would result in a correct 

ordering.  

In summary, the results from the first setting appear promising; and the confidence intervals 

give a good benchmark for the magnitude of the estimation error that we would expect under 

ideal conditions, i.e. if return profiles are linear in the market. 

The picture changes when portfolios with options are examined. Recall that in setting B, a 

short position in out-of-the-money puts is combined with a long position in at-the-money 

puts. MES as well as the two CoVaR measures typically order the portfolios in the wrong 

way. On average, the least risky portfolio is judged to be the portfolio with the highest risk. 

The extent of misestimation is most pronounced for exposure CoVaR. The explanation is 

straightforward. Portfolios with larger option weights have a larger tail risk, but when 

moderately negative, their returns are less pronounced than the market returns. The 

confidence levels defining the MES and CoVaR chosen for the estimation are not extreme 

enough to capture what is going on in the tail. The weak discriminatory power is consistent 

with Figure 4 where the exact 5% MES of all B portfolios are close neighbors (similar for 

exposure CoVaR). The tail risk gamma, on the other hand, does a good job in discriminating 

risks. The return profile is concave over the entire domain; as is the profile of the put option 

that is used in the regression. The tail risk gamma can therefore provide a good estimate of 

the portfolio’s curvature, which in turn is monotonically related to the tail risk. When taking 

the width of the confidence intervals into account, however, the performance of the rail risk 

gamma is inferior to the one of the well-performing measures in the linear case.  
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In setting C, portfolios differ in their protection. The portfolios have a J-shaped return profile. 

The relative performance is similar to setting B. Exposure CoVaR performs worst, followed 

by MES and CoVaR. Again, this conforms to Figure 4 where all 5% MES for C portfolios 

almost coincide. The explanation for this pattern is analogous to setting B. In setting C, return 

profiles are convex rather than concave. Due to the high confidence levels, MES and 

CoVaR overestimate the risk of portfolios with a high curvature. The tail risk gamma 

performs well, and better than in setting B. This can be explained by noting that the portfolios 

in B contain two options, while the C portfolios contain only one option. As the regression 

used for the estimation of the tail risk gamma contains only one option, the curvature 

estimates derived from the regression are better in the C setting. 

The final panel squashes the hopes that there always is at least one measure that provides a 

good ranking of risks. The return profiles of the D portfolios are concave in the extreme tail 

but convex in the remaining part. The estimation methods mainly use observations from the 

convex part, and therefore do not get the ordering right. As is evident from Figure 4 and the 

return profiles shown in Section 5.2, errors would be economically significant. The high-risk 

portfolios, which are mostly judged to be the least risky by the four measures, embody much 

greater tail risk.  

6 Conclusion 

We started our analysis of return-based systemic risk measures by examining whether they 

adequately indicate differences in systematic risk, idiosyncratic risk, or contagion. The 

ΔCoVaR measure suggested by Adrian and Brunnermeier (2011) assigns a lower systemic 

risk as idiosyncratic risk is increased. In the examples studied here, it also assigns a higher 

systemic risk to infected banks, whereas marginal expected shortfall and tail risk gamma 

mostly do the opposite.  

We then explored how limited data availability typical of practical applications may inhibit 

the measures’ performance. Typical data sets available for estimating systemic risk do not 

include a sufficient number of extreme events. Hence, relying on observations of less extreme 

events is unavoidable. We use positions in standard index options to illustrate that this can 

lead to serious misestimation of systemic risk. It is possible to take large tail risks that remain 

nearly invisible in the estimated risk measures. To make matters worse, options can be used 

to diminish losses in regions from where most of the data for the empirical risk measures are 

collected, so that systemic risk appears to be very low even though it is extremely high. On 
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the other hand, protective put strategies that are immune to extreme shocks can be judged to 

have high systemic risk because estimation methods rely on less extreme return realizations 

in which option premia depress returns relative to unprotected institutions.  

Taking liquidity and transaction costs into account, the option structures examined in the 

paper may not be feasible for large financial institutions. However, non-linearities can also 

arise from loan exposures, credit derivatives or bespoke equity derivatives. The key insight 

from the analysis is that non-linearities can have a large impact on the informativeness of 

systemic risk measures. 

Some improvement might be achieved by modeling the relationship between extreme and 

less extreme quantiles. For example, it would be possible to calculate a range of risk 

measures based on tail probabilities between 1% and 10%, laying a smooth curve through 

them, and evaluating them at 0.1%. However, whatever the extrapolation method is – once 

market participants know it, they might be able to dupe it by bespoke derivatives positions.  

Together, these observations raise doubts about the informativeness of the proposed 

measures. In particular, a direct application to regulatory capital surcharges for systemic risk 

could create wrong incentives for banks. We conclude that regulatory capital surcharges for 

systemic risk should not rely exclusively on market-based measures of systemic risk, and that 

more work needs to be done in order to assess the reliability of information that can be drawn 

from a return-based analysis of systemic risk. 

Appendix 

A Sensitivity analyses of the MES 

We are interested in the sensitivity of MES under the linear model of Section 3 to the 

idiosyncratic risk of a single bank, leaving everything else constant. Idiosyncratic risk is 

measured by  2
i  . The MES in the linear model is given by  

 i i s s SMES a b E R R Q    

We notice  sE R   and rewrite the conditional expectation to 

     s s S s ZE R R Q R E Z Z Q       
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where Z  is standard normal. The expectation on the right-hand side depends on   only and 

is negative for the   of interest. Setting  ZC E Z Z Q    we obtain 

   i i sMES a b R C     (A.1) 

Standard calculus shows that the partial derivative of ib  to  2
i   is positive. Because 

 sR  grows with  2
i   and C  is negative, the term in parentheses decreases; it is also 

negative for relevant parameter choices, as can be seen from the estimate 

        2 2 1 2 ,s iR C F N C F C                  

again taking into account that C   is negative. As 0.05C  is already smaller than –2 and even 

more negative for more extreme confidence levels, we would have to have a market where 

the index has a drift more than twice as large as its volatility. This is very unusual. Assuming 

that the parentheses term in (A.1) is indeed negative, the growing 1b  makes the magnitude of 

the MES grow when idiosyncratic risk rises. 

B Sensitivity analysis of  ΔCoVaR 

To gain more insight into the way ΔCoVaR may depend on option positions, we use the 

market model of Section 5.2 and replace the example of a kinked risk profile as in (11) by a 

smooth profile. We assume that the sensitivity of the portfolio return on the market return is 

expressed by  

   ,i m iR h R    (B.1) 

where h  is a smooth, strictly increasing function, as it is given for the portfolio types A and 

B. 

First, we look at the case of zero idiosyncratic risk. This turns mR  and iR  into co-monotonous 

variables so that their quantiles are strictly linked:     i mQ R h Q R  . Under 

  i iR Q R , the market return is deterministic, and we have, introducing   1h   as the (also 

strictly increasing) inverse of h , 
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Since h  has no effect on the distribution of mR , formula (B.2) shows that the ΔCoVaR does 

not react on the shape of h  at all, provided it is strictly increasing. Adding any monotonicity-

preserving downward bias to the risk profile, for instance by additional put options held short, 

is neglected by the ΔCoVaR. 

Now let us add idiosyncratic risk. If it is not too large, we can approximate the CoVaR by 

linearizing h  in the tail. The CoVaR would be the ideal point of a Taylor expansion but is yet 

unknown, of course. We take  mQ R  instead, the CoVaR in the absence of idiosyncratic 

risk. This gives  

         'i a m a m m a m i m iR h Q R h Q R R Q R a b R        

  with        'a m a m a ma h Q R h Q R Q R    and   ' a mb h Q R  . Recalling that mR  and i  

are independent, the linearization also provides us with an approximation for the quantile of 

iR : 

        1 2 2 2 1 .i i m iQ R a R a b                (B.3) 

To condition on iR , we need an orthogonal representation 

 m iR c R d      (B.4) 

that fulfills  cov , 0iR  
 

and
   0 E . Resolving (B.4) to   and putting it into the 

covariance condition gives 

 
2

2
m

i

b
c

R








 

and, combining this with the expectations of mR  and  , 

     1m id E R E c R c b c a          , 

where   is the expectation of mR . As ic R  and   must be orthogonal, their variances add up 

to the one of mR , implying  
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var m i
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c R
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. 

As mR  is now represented as an approximate sum of two orthogonal components   and iR , 

the former is unaffected when we condition on the latter. Using (B.3), we obtain 
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and, with m ig b   , 
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 (B.5) 

Given typical relative sizes of volatilities and drift, the second term is very small compared to 

the first.8 If b  grows (and so g  proportionally) while market and idiosyncratic risk remain 

fixed, the first (negative) term decreases for 1g  , increases for larger values, and 

converges from below to  1 1m    . This means, increasing the portfolio’s market 

sensitivity in the tail – be it by raising i  or by increasing an option position with positive 

delta – can make the magnitude of the CoVaR shrink. 

An important observation is that the approximate CoVaR does not depend on a , which is 

the intercept of the linearization of h . The invariance to the intercept has an interesting 

consequence. Assume the bank holds a digital option short that pays if the market falls below 

some threshold. Given also a short time to maturity, the option delta is nearly flat outside a 

small range around the trigger point. If the probability that the option pays is remote enough 

from the CoVaR’s confidence level (above or below), the steepness b  of the risk profile 

relevant for the CoVaR would remain nearly unaffected by the existence – and the size – of 

the short digital option position. The option does have impact on a , but that has a negligible 

one on CoVaR. 

                                                 
8 Recall that we deal with a return horizon from 1 to 5 days. For daily returns, annual volatilities of the order 

of 20% transform into standard deviations of 20% / 260 1.2% , whereas drifts of 10% transform into 

10% / 260 0.038% . 
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In order to calculate the ΔCoVaR, which requires the CoVaR under iR  being at its median, 

another linearization can be performed with the median of mR  as expansion point. The linear 

approximation has then a steepness of 0.5b  (also defining 0.5 0.5 m ig b   ), which finally 

gives 

 

     

 

0.5

1

2 2
0.5

1 1
1

1 1

m i i m i i

m

CoVaR Q R R Q R Q R R Q R

g

g g

  





 

    

 
     
   

 (B.6) 

where the drift terms were ignored for their relatively small extent.  

Let us now look at the particular case of the B portfolios. Their function h  (represented by 

the solid line in the right upper panel of Figure) is increasing and concave, and hence steeper 

in the left-hand tail of mR  than at its median. The more options are proportionally added in 

the transition from portfolio B1 to B16, the larger b  becomes (for instance, 0.01b  grows from 

1 to 2.45), and the smaller becomes 0.5b  (it shrinks from 1 to 0.69). Both CoVaRs in (B.6) 

show the wrong trend; the ΔCoVaR does so accordingly.  

In the case of portfolio type A with linear risk profiles, equation (B.6) is precise, with a 

uniform ib  , and we obtain 

    
1/22

1 1
2 22

1 1 1
1

i
m m

m

g
CoVaR

bg




   




   
          

  
, 

with effects as analyzed in Section 3: while increasing the portfolio’s beta is now accounted 

for by ΔCoVaR becoming more negative, i.e., in the correct way, increasing the idiosyncratic 

risk makes the absolute value of the ΔCoVaR shrink, ceteris paribus. 

C Extrapolating systemic risk measures over confidence levels 

In this appendix we provide an example of an extrapolation from MES and exposure CoVaR 

for higher confidence levels to the 0.1% level. We use the setup of Section 5.3 and examine 

exact risk measures evaluated at confidence levels 1%, 5%, and 10% as nodes. These values 

on the x-axis are represented on a logarithmic scale. Afterwards, a parable is laid through the 

three nodes and evaluated at  log 0.1% . This is the extrapolation value of the 0.1% risk 

measure.  
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In Figure A1, solid lines represent correct MES or CoVaR under varying confidence levels. 

Dashed lines represent the fitted parables which coincide with their correct counterparts at 

those points in the right-hand half of each graph which are marked by filled symbols. 

Extrapolation values are marked by blank symbols. 

While this extrapolation method performs well in setting A to C – in particular, it generates 

the right risk ranking within each setting – the last setting D sharply contrasts with the others. 

As in the main part of the analysis, a reversed risk ranking is suggested. 
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Figure A1: Extrapolating exact risk measures from moderate to extreme confidence 
levels 
Confidence levels of 1%, 5%, and 10% build grid points on a logarithmic scale. Solid lines represent correct MES and exposure ΔCoVaR 
under varying confidence levels. The risk measure on 0.1% level is approximated by an extrapolating parable. Dashed lines represent the 
fitted parables which coincide with their correct counterparts at those points in the right-hand half of each graph which are marked by filled 
symbols. Extrapolation values are marked by blank symbols. 

A portfolios 

 
B portfolios 

 
C portfolios 

 
D portfolios 

 
  

-8%

-7%

-6%

-5%

-4%

-3%

-2%

-1%

0%

0,1% 1,0% 10,0%

E
x

p
o

s
u

re
 Δ

C
o

V
a

R

Confidence level (log scale)

-9%

-8%

-7%

-6%

-5%

-4%

-3%

-2%

-1%

0%

0,1% 1,0% 10,0%M
a

rg
in

a
l e

x
p

e
c
te

d
 s

h
o

rt
fa

ll

Confidence level (log scale)

A1, correct

A1, fitted

A6, correct

A6, fitted

A11, correct

A11, fitted

A16, correct

A16, fitted

-6%

-5%

-4%

-3%

-2%

-1%

0%

0,1% 1,0% 10,0%

E
x

p
o

s
u

re
 Δ

C
o

V
a

R

Confidence level (log scale)

-7%

-6%

-5%

-4%

-3%

-2%

-1%

0%

0,1% 1,0% 10,0%M
a

rg
in

a
l e

x
p

e
c
te

d
 s

h
o

rt
fa

ll

Confidence level (log scale)

B1, correct

B1, fitted

B6, correct

B6, fitted

B11, correct

B11, fitted

B16, correct

B16, fitted

-4%

-4%

-3%

-3%

-2%

-2%

-1%

-1%

0%

0,1% 1,0% 10,0%

E
x

p
o

s
u

re
 Δ

C
o

V
a

R

Confidence level (log scale)

-5%

-4%

-3%

-2%

-1%

0%

1%

0,1% 1,0% 10,0%M
a

rg
in

a
l e

x
p

e
c
te

d
 s

h
o

rt
fa

ll

Confidence level (log scale)

C1, correct

C1, fitted

C6, correct

C6, fitted

C11, correct

C11, fitted

C16, correct

C16, fitted

-6%

-5%

-4%

-3%

-2%

-1%

0%

1%

0,1% 1,0% 10,0%

E
x

p
o

s
u

re
 Δ

C
o

V
a

R

Confidence level (log scale)

-16%

-14%

-12%

-10%

-8%

-6%

-4%

-2%

0%

0,1% 1,0% 10,0%M
a
rg

in
a

l e
x

p
e
c

te
d

 s
h

o
rt

fa
ll

Confidence level (log scale)

D1, correct

D1, fitted

D6, correct

D6, fitted

D11, correct

D11, fitted

D16, correct

D16, fitted



 
34

References 

Acharya, V., Engle, R., Richardson, M., 2012. Capital shortfall: A new approach to ranking 
and regulating systemic risks. American Economic Review 102 (3), 59–64. 

Adrian, T., Brunnermeier, M., 2011. CoVaR. NBER Working Paper No. w17454. 

Bartram, S., Brown, G., Hund, J., 2007. Estimating systemic risk in the international financial 
system. Journal of Financial Economics 86 (3), 835–869. 

Basel Committee on Banking Supervision, 2011a. Global systemically important banks: 
assessment methodology and the additional loss absorbency requirement. Rules text, 
November. 

Basel Committee on Banking Supervision, 2011b. Global systemically important banks: 
assessment methodology and the additional loss absorbency requirement. Cover note, 
November. 

Basel Committee on Banking Supervision, 2012. A framework for dealing with domestic 
systemically important banks. Consultative document, June. 

Benoit, S., Colletaz, G., Hurlin, C., Perignon, C., 2012. A theoretical and empirical 
comparison of systemic risk measures. Working paper. 

Billio, M., Getmansky, M., Lo, A., Pelizzon, L., 2010. Econometric measures of systemic 
risk in the finance and insurance sectors. NBER Working Paper No. 16223, July 
2010. 

Bisias, D., Flood, M., Lo, A., Valavanis, S., 2012. A survey of systemic risk analytics. Office 
of Financial Research Working Paper No. 1. 

Brownlees, C., Engle, R., 2011. Volatility, correlation and tails for systemic risk 
measurement. Working paper. 

Carr, P., Wu, L., 2011. A simple robust link between American puts and credit protection. 
Review of Financial Studies 24 (2), 473–505. 

Cont, R., Moussa, A., Santos, E., 2012. Network structure and systemic risk in banking 
systems. Working paper.   

De Bandt, O., Hartmann, P., 2002. Systemic risks in banking, In: Financial crisis, contagion 
and the Lender of Last resort. Edited by C. Goodhart and G. Illing, Oxford 
University Press. 

De Jonghe, O., 2009. Back to the basics in banking? A micro-analysis of banking system 
stability. Journal of Financial Intermediation 19 (3), 387–417. 

Drehmann, M., Tarashev, N., 2011. Systemic importance: some simple indicators. BIS 
Quarterly Review, March 2011. 

Elsinger, H., Lehar, A., Summer, M., 2006. Using market information for banking system 
risk assessment. International Journal of Central Banking 2 (1), 137–165. 

Gauthier, C., Gravelle, T., Liu, X., Souissi, M., 2011. What matters in determining capital 
surcharges for systemically important financial institutions? Bank of Canada 
discussion paper 2011–9. 



 
35

Gauthier, C., Lehar, A., Souissi, M., 2012. Macroprudential capital requirements and 
systemic risk. Journal of Financial Intermediation 21, 594–618. 

Hanson, S., Kashyap, A.K., Stein, J.C., 2001. A macroprudential approach to financial 
regulation. Journal of Economic Perspectives 25 (1), 3–28. 

Hartmann, P., Straetmans, S., de Vries, C.G., 2006. Banking system stability: a cross-atlantic 
perspective. In: The Risks of Financial Institutions, eds. Mark Carey and Rene Stulz; 
National Bureau of Economic Research Conference Report. 

Hautsch, N., Schaumburg, J., Schienle, M., 2011. Quantifying time-varying marginal 
systemic risk contributions. Working paper. 

Huang, X., Zhou, H., Zhu, H., 2009. A framework for assessing the systemic risk of major 
financial institutions. Journal of Banking and Finance 33 (11), 2036–2049. 

Knaup, M., Wagner, W., 2012. Forward-looking tail risk exposures at U.S. bank holding 
companies. Journal of Financial Services Research 42 (1–2), 35–54. 

López-Espinosa, G., Moreno, A., Rubia, A., Valderrama, L., 2012. Short-term wholesale 
funding and systemic risk: A global CoVaR approach. Journal of Banking and 
Finance 36 (12), 3150–3162. 

Martínez-Jaramillo, S., Pérez, O., Avila, F., López, F., 2010. Systemic risk, financial 
contagion and financial fragility. Journal of Economic Dynamics and Control, 34 
(11), 2358–2374. 

Memmel, C., Sachs, A., 2011. Contagion in the interbank market and its determinants. 
Bundesbank discussion paper series 2, 17/2011. 

Merton, R., 1974. On the pricing of corporate debt: The risk structure of interest rates. 
Journal of Finance 29 (2), 449–470. 

Pericoli, M., Sbracia, M., 2003. A primer on financial contagion. Journal of Economic 
Surveys 17 (4), 571–608. 

Pesaran, H., Pick, A., 2007. Econometric issues in the analysis of contagion. Journal of 
Economic Dynamics and Control 31 (4), 1245–1277. 

Puzanova, N., Düllmann, K., 2013. Systemic risk contributions: A credit portfolio approach. 
Journal of Banking & Finance 37 (4), 1243–1257. 

Segoviano, M., Goodhart, C., 2009. Banking stability measures. IMF Working Paper 09/04. 

Tarashev, N., Borio, C., Tsatsaronis, K., 2010. Attributing systemic risk to individual 
institutions. BIS Working Paper 308.  

Upper, C., Worms, A., 2004. Estimating bilateral exposures in the German interbank market: 
Is there a danger of contagion? European Economic Review 48 (4), 827–849. 

Webber, L., Willison, M., 2011. Systemic capital requirements. Bank of England working 
paper 436. 

Zhou, C., 2010. Are banks too big to fail? Measuring systemic importance of financial 
institutions. International Journal of Central Banking 6 (4), 205–250. 

  



 
36

Table 1: Simulated systemic risk measures in the presence of contagion 
We simulate banking systems with N equally-sized banks. The banking system return is the value-weighted 
average of bank returns. Bank returns are driven by a common factor, idiosyncratic risk, and spillover from bank 
1 to other banks: 

 1

1 1 1

1

1

1

, (infectious bank)

, 2,..., (infected bank)j j j

N

S ii

R F

R F I j N

R N R

 

 
   




 
   

 

 

Parameters are set to 5 0N  , 
1 1j   , and (stated in per annum values):   0.05E F  ,   0.2F  , 

 1 0.2   ,        1

1/2
2 2

1 1varj I          for all 1j  . CoVaR measures are estimated through Monte 

Carlo simulation with 50 million trials. For CoVaRq, they are computed with observations between the (q – 
0.2%) and (q + 0.2%) quantiles of the conditioning variable. For the tail risk gamma, put prices are obtained 
through a separate Monte Carlo simulation, and then used in a regression of the bank’s return on the system 
return and the change in the option price. Fields are shaded gray if the measure assigns more systemic risk to the 
infected than to the infectious bank.  

 iRSCoVaR |
01.0  SRiCoVaR |

01.0  MES 
Tail risk 
gamma 

Panel A:  = 0.75  = –0.0204 

  Infectious –2.091% –3.154% –3.103% 0.670% 

  Infected –2.793% –3.324% –2.944% –0.017% 

Panel B:  = 0.75  = –0.0289 

  Infectious –2.091% –3.003% –2.772% 0.217% 

  Infected –2.581% –3.091% –2.705% –0.005% 

Panel C:  = 0.75  = –0.0383 

  Infectious –2.090% –2.930% –2.602% 0.047% 

  Infected –2.232% –2.944% –2.591% –0.001% 

Panel D:  = 0.25  = –0.0204 

  Infectious –2.086% –3.398% –2.740% 0.201% 

  Infected –2.139% –2.937% –2.618% –0.005% 

Panel E:  = 0.25  = –0.0289 

  Infectious –2.090% –3.082% –2.630% 0.081% 

  Infected –2.116% –2.938% –2.582% –0.001% 

Panel F:  = 0.25  = –0.0383 

  Infectious –2.082% –3.025% –2.575% 0.016% 

  Infected –2.092% –2.903% –2.567% –0.001% 
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Figure 1: How CoVaR responds to idiosyncratic risk 

We examine a banking system with N equally-sized banks. Returns are described through: 

1

1
,

N

i i i S ii
R F R N R  


   

 

with 2 2~ ( , ( )), ~ (0, ( ))i iF N F N     .  

All i  and F  are independent. For the analysis, banks are assumed to have uniform beta of 1; N–1 banks have 

a per annum idiosyncratic volatility of 0.2, while one bank has an idiosyncratic volatility of 0.4. The figure 

shows how ,system jCoVaR  differs between the riskier bank and the other banks, depending on the number of 

banks in the system. 
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Figure 2: Simulated system returns versus returns of infectious and infected banks 

We simulate a banking system with N equally-sized banks. The banking system return is the value-weighted 
average of bank returns. Bank returns are driven by a common factor, idiosyncratic risk, and spillover from bank 
1 to other banks: 

 1

1
1 1 1 1 1

 (infectious bank),  , 2,..., (infected bank),  
N

j j j S ii
R F R F I j N R N R       

 
       

 

Parameters (per annum) are set to   0.05E F  ,   0.2F  ,  1 0.2   ,        1

0.5
2 2

1 1vari I          for 

all j > 1, N = 50. Panel A plots the full sample. Panel B contains only cases of contagion, where 
1  . Panel C 

contains cases of no contagion. 
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Figure 3: Market return versus portfolio return in four archetypical settings 

Assuming that market returns follow a lognormal distribution with p.a. drift 0.05 and volatility 20%, we analyze 
daily returns of 16 portfolios in four settings, A to D. Portfolios No 16 are defined as follows: 

A16: = 2. No options. 

B16: = 1; –0.45% in one-month put with strike 0.8; 3% in one-month put with strike 1. 

C16: = 2.125; 0.75% in one-month put with strike 0.8 

D16: = 1.375; –4.5% in one-month put with strike 0.7; 5.7% in one-month put with strike 0.725 

Weights for portfolios x.1 to x.16 obtain by linearly adjusting betas to 1, and option weights to zero. The idio-
syncratic volatility is set to a uniform value of 20%. Option values are determined with Black-Scholes.  

The solid line in each graph plots the market return against the expected portfolio return, conditional on the 
market return. The straight gray line marks the conditional return of an options-free linear portfolio with beta = 
1. 
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Figure 4: Exact systemic risk measures for different confidence levels 
Assuming that market returns follow a lognormal distribution with p.a. drift 0.05 and volatility 20%, we analyze daily 
returns of 16 portfolios in four settings, A to D. Portfolios No 16 are defined as follows: 

A16: = 2. No options. 
B16: = 1; –0.45% in one-month put with strike 0.8; 3% in one-month put with strike 1. 
C16: = 2.125; 0.75% in one-month put with strike 0.8 
D16: = 1.375; –4.5% in one-month put with strike 0.7; 5.7% in one-month put with strike 0.725 

Weights for portfolios x.1 to x.16 obtain by linearly adjusting betas to 1, and option weights to zero. The idiosyncratic 
volatility is set to a uniform value of 20%. Option values are determined with Black-Scholes. Marginal expected shortfall 
(MES), CoVaR, and exposure CoVar are calculated for tail probabilities of 0.1%, 1%, 5%, and 10% by analytical and 
numerical means.  
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Figure 5: Simulated performance of systemic risk measures  

Assuming that market returns follow a lognormal distribution with p.a. drift 0.05 and volatility 20% we simulate daily returns of 16 
portfolios in four settings, A to D. Portfolios 16 are defined as follows: 

A16: = 2. No options. 
B16: = 1; –0.45% in one-month put with strike 0.8; 3% in one-month put with strike 1. 
C16: = 2.125; 0.75% in one-month put with strike 0.8 
D16: = 1.375; –4.5% in one-month put with strike 0.7; 5.7% in one-month put with strike 0.725 

Weights for portfolios x.1 to x.16 obtain by linearly adjusting betas to 1, and option weights to zero. Idiosyncratic volatility is set to a 
uniform value of 20%. Option values are determined with Black-Scholes. Marginal expected shortfall (MES, 5%) and tail risk gammas are 
estimated with 260 daily returns; CoVaR and exposure CoVaR (1%) with 1300 weekly returns. Simulation and estimation are repeated 
1,000 times. The figures plot average estimated risk ranks, along with 90% confidence intervals, against the true risk rank as measured by 
MES (0.1%) and exposure CoVar (0.1%). 
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