Are SME Loans Less Risky than Regulatory Capital Requirements Suggest?*

Klaus Düllmann

Philipp Koziol

EBA Research Workshop, London 14 November 2013

Deutsche Bundesbank

^{*}This paper represents the authors' personal opinions and does not necessarily reflect the views of the Deutsche Bundesbank or its staff.

- Higher minimum capital ratios and a tighter capital definition in Basel III have indirectly also affected capital requirements for credit exposures to SMEs
- Do these regulatory adjustments treat SME unfairly given they didn't cause the recent financial crises?
- Empirical literature is inconclusive but tendency towards lower asset correlation estimates than those in the corporate risk weight functions of Basel II

• Contribution:

- 1. Assess the systematic risk of German SME loans measured by the asset correlation in a common asset value credit risk model
- 2. Compare estimation results with capital requirements for SME lending under the CRR / CRD 4 framework
- 3. Unique data sample of SME lending by over 400 small and large German banks

Contribution and Overview

- Step 1: Estimate asset correlations (AC) from historical default rates of selected size and rating buckets
- Step 2: Compare the size-dependence of IRB risk-weights with the sizedependence of empirical risk-weights (i.e. risk weights based on estimates of AC and PD)
- Focus on "relative calibration": Does the regulatory capital for SMEs appropriately reflect the systematic risk relative to other asset classes?
- Use IRB capital requirements (based on the asymptotic single risk factor model) and not asset correlation estimates directly for a comparison because they are the economically relevant measure
- Large corporates serve as benchmark, i.e. we assume that their IRB risk weights are "correctly" calibrated
- Carry out various robustness checks for estimation results

Data

- Data on more than 400 German banks (both small and large banks)
- Default rates in the credit portfolio
 - Borrowers: domestic firms except for credit institutions with available IRB PDs (no retail and specialized lending)
 - Number of borrowers as of the beginning of each period
 - Number of defaults occurring during the period under consideration
- **Data clustering** of default rates along three dimensions:
 - 1. **Time period**: 14 semi-annual periods, 1 June 2005 to 31 December 2011 (7 years), seasonally adjusted
 - 2. Rating category: Six rating classes based on IFD master scale \Rightarrow aggregated: I–III, IV, V–VI
 - 3. Size: Measured by yearly turnover (in m €): ⇒ [0, 0.3], (0.3, 1], (1, 2.5], (2.5, 5], (5, 50], > 50

Data – number of ratings and defaults

DEUTSCHE

DESBANK

Data – default rates

Klaus Duellmann and Philipp Koziol, Deutsche Bundesbank

Data – default rates

Klaus Duellmann and Philipp Koziol, Deutsche Bundesbank

Model and estimation methodology

$$Y_i = \sqrt{\rho}X + \sqrt{1 - \rho}\varepsilon_i$$

systematic risk-factor $X \sim N(0,1),$ idiosyncratic risk-factor $\varepsilon_i \sim N(0,1),$ asset correlation ρ

- Conditional default probability: $P(L = 1 | X = x) = \Phi\left(\frac{\gamma \sqrt{\rho} \cdot x}{\sqrt{1 \rho}}\right)$
- Estimation technique:
 - Maximum-Likelihood (ML) estimator by Gordy & Heitfield (2002), used for Basel II calibration, downward bias for small samples
 - Robustness checks through Method-of-Moments (MM) and Asymptotic Maximum Likelihood (AML) without bias correction, yearly estimations...

Empirical risk-weight formula:

$$RW(\mathsf{LGD},\mathsf{PD},\mathsf{M},\rho) = 1.06 \cdot 12.5 \cdot \mathsf{LGD} \cdot \left[\Phi\left(\frac{\Phi^{-1}(\mathsf{PD}) + \sqrt{\rho}\Phi^{-1}(0.999)}{\sqrt{1-\rho}}\right) - \mathsf{PD} \right] \cdot f(\mathsf{PD},\mathsf{M})$$

Basel II risk-weight formula:

$$RW(\mathsf{LGD},\mathsf{PD},\mathsf{M}) = 1.06 \cdot 12.5 \cdot \mathsf{LGD} \left[\Phi \left(\frac{\Phi^{-1}(\mathsf{PD}) + \sqrt{\rho(\mathsf{PD},\mathsf{S})} \Phi^{-1}(0.999)}{\sqrt{1 - \rho(\mathsf{PD},\mathsf{S})}} \right) - \mathsf{PD} \right] f(\mathsf{PD},\mathsf{M})$$

where

$$\rho(\mathsf{PD},\mathsf{S}) = \frac{1 - e^{-50}\mathsf{PD}}{1 - e^{-50}} \cdot 0.12 + \left(1 - \frac{1 - e^{-50}\mathsf{PD}}{1 - e^{-50}}\right) \cdot 0.24 - 0.04 \left(1 - \frac{\min\{50, \max\{S, 5\}\} - 5}{45}\right)$$

Other retail: turnover < 2.5 m \in ; S:= turnover; M:= maturity

Results – Risk weights per rating and size class

	Other Retail			Corporate			
Estimates	Turnover	[0, 0.3]	(0.3, 1]	(1, 2.5]	(2.5, 5]	(5, 50]	> 50
	Rating						
	1-111	4.0	3.9	4.0	4.2	4.3	6.4
	IV	9.6	9.4	12.6	14.6	13.2	23.9
	V-VI	30.3	22.6	30.2	33.9	36.3	50.8
	Other Retail			Corporate			
Basel II	Turnover	[0, 0.3]	(0.3, 1]	(1, 2.5]	(2.5, 5]	(5, 50]	> 50
	Rating		` -	、 -	` -	` -	
	-	39.8	36.6	36.6	61.2	62.4	67.8
	IV	62.3	63.6	64.8	100.9	107.7	130.3
	V-VI	80.3	81.4	83.6	159.7	167.1	196.5

Relative difference for estimated RW: $\Delta_{5-50}^{Est,V-VI} = \frac{36.3-50.8}{50.8} = -28.5$ Relative difference for Basel II RW: $\Delta_{5-50}^{BII,V-VI} = \frac{167.1-196.5}{196.5} = -15.0$

Klaus Duellmann and Philipp Koziol, Deutsche Bundesbank

Results – Relative differences by rating and turnover class

	Other Retail			Corporate			
Estimates	Turnover	[0, 0.3]	(0.3, 1]	(1, 2.5]	(2.5, 5]	(5, 50]	> 50
	Rating						
	-	-37.3	-0.39	-39.1	-34.6	-32.8	0.00
	IV	-59.9	-60.6	-47.5	-38.9	-45.0	0.00
	V-VI	-40.4	-55.5	-40.5	-33.3	-28.5	0.00
	Other Retail			Corporate			
Basel II	Turnover	[0, 0.3]	(0.3, 1]	(1, 2.5]	(2.5, 5]	(5, 50]	> 50
	Rating						
	-	-41.3	-46.0	-46.0	-9.8	-8.0	0.00
	IV	-52.2	-51.2	-50.3	-22.6	-17.4	0.00
	V-VI	-59.1	-0.58.6	-57.5	-18.7	-15.0	0.00

Reductions are calculated as a weighted average with respect to the number of loans per rating class

IRBA		Other Retail Corporate			Corporate		
	Turnover Differences	[0, 0.3]	(0.3, 1]	(1, 2.5]	(2.5, 5]	(5, 50]	> 50
	Basel II IRBA Estimated	-49.3% -42.7%	-50.2% -47.4%	-48.9% -39.7 %	-13.3% -35.1%	-10.3% -33.9%	0.0% 0.0%
	Total Difference	6.6%	2.8%	9.2%	-21.8%	-23.6%	0.0%

RSA		(Other Retai	l	Corporate		
	Turnover Differences	[0, 0.3]	(0.3, 1]	(1, 2.5]	(2.5, 5]	(5, 50]	> 50
	Basel II RSA	-25.0%	-25.0%	-25.0%	0.0%	0.0%	0.0%
	Estimated	-42.7%	-47.4%	-39.7%	-35.1%	-33.9%	0.0%
	Total Difference	-17.7%	-22.4%	-14.7%	-35.1%	-33.9%	0.0%

Total differences are averages over rating categories.

- \bullet Consider total differences >10% between Basel II and estimated risk weights as "economically" significant
- Then total differences are significant for
 - SMEs in the IRB corporate portfolio (annual turnover between 5 and 40 mln EUR)
 - generally under RSA
- Before drawing policy conclusions the following caveats should be considered
 - Basel is an international framework; results for other countries necessary before risk weights functions should be revisited (work in progress).
 - RSA was calibrated more conservatively than the IRBA since it is much less risk sensitive. This can at least partly explain significant total differences.
 - Time series of default rates is till relatively short and may not cover a "representative" economic cycle.