

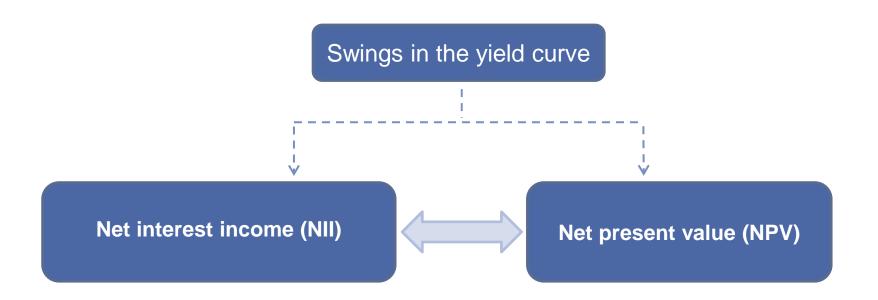
Euro area banks' interest rate risk exposure to level, slope and curvature swings in the yield curve

Daniel Foos¹, Eva Lütkebohmert², Mariia Markovych², **Kamil Pliszka**¹

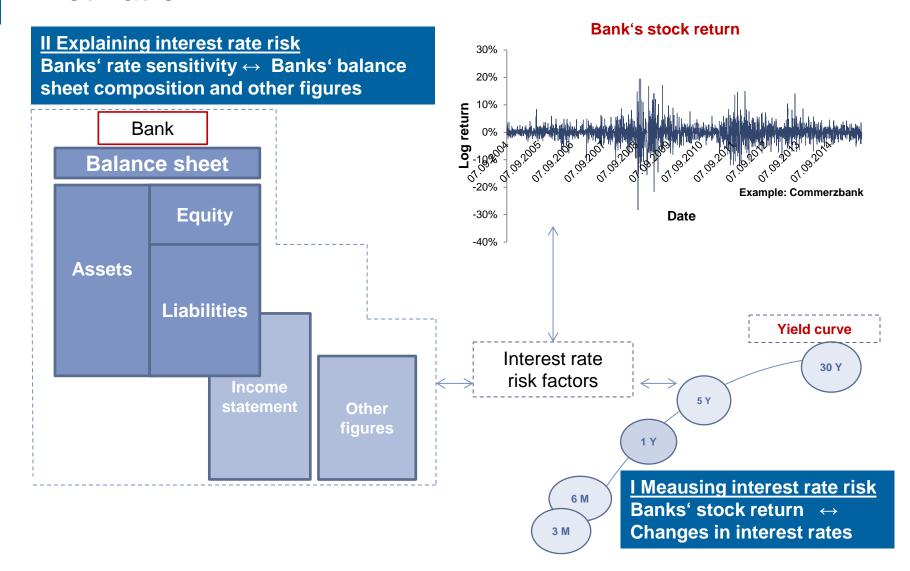
¹Deutsche Bundesbank, ²University of Freiburg

2017 EBA Policy Research Workshop "The future role of quantitative models in financial regulation"

28-29 November 2017


The opinions expressed in this presentation are those of the author and do not necessarily reflect the views of the Deutsche Bundesbank or its staff

1 Motivation


Interest rate risk

- One of the major risk sources for financial institutions
- Interest rate increases in the low interest rate environment in the euro area: Prospect for higher net interest income vs losses in present value

1 Motivation

2 Literature

Negative impact of interest rate increases on equity

- Flannery/James (1984, JF)
- Fraser/Madura/Weigand (2002, FR)
- English/van den Heuvel/Zakrajšek (2014,Wharton School WP)

Positive or inconclusive impact of rate increases on equity

- Schuermann/Stiroh (2006, Fed NY WP)
- Ballester/Gonzales/Soto (2009, UCLM WP)
- Hasan/Kalotychou//Staikouras/Zhao (2013, WP)

Positive impact on the net interest margin

- Hanweck/Ryu (2005, FDIC WP)
- English/van den Heuvel/Zakrajšek (2014, Wharton School WP)

DCC M-GARCH model: Engle (2002, JBE)

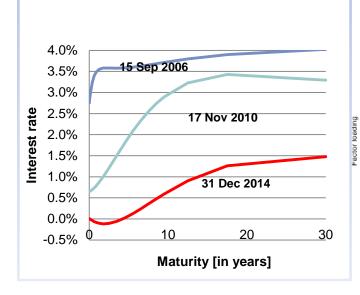
Bayesian DCC M-GARCH model: Fioruci/Ehlers/Filho (2014, JAS)

Contribution

- Sample: Major euro area banks (listed SSM banks)
- Time period 2005 to 2014 covers the low interest rate environment in the euro area
- Time-varying sensitivities via the Bayesian DCC M-GARCH model
- Combined analysis: (i) Analysis of sensitivities; (ii) Bank-specific factors

3 Measuring SSM banks' interest rate risk exposure 3.1 Methodology

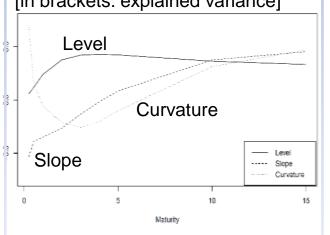
Yield curve


Principal components

Bayesian DCC M-GARCH

Source of the yield curve

Svensson model based on AAA euro area government bonds (source: ECB)



Methodology for capturing yield curve swings

First PC: level (76.29%); second PC: **slope** (11.59%); third PC:

curvature (8.21%)

[in brackets: explained variance]

Methodology for estimating sensitivities of banks' stock returns to changes in level, slope and curvature of the yield curve

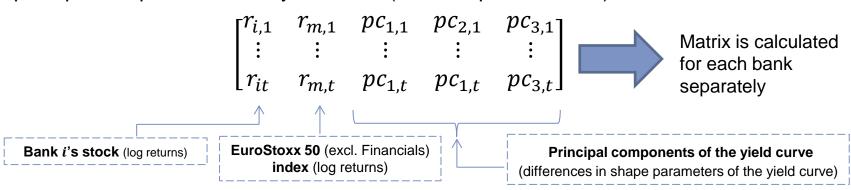
Kamil Pliszka 28 November 2017

3 Measuring SSM banks' interest rate risk exposure 3.1 Methodology

Sensitivities to swings in the yield curve via Bayesian DCC M-GARCH

$$\widehat{\beta_{IR,t}^{(i)}} = \frac{Cov \ (r_{it} \ \Delta IR_t)}{Var \ (\Delta IR_t)}$$
 i: bank, IR: interest rate risk factor (i.e. level, slope, curvature)
$$r_{it}$$
: stock price log return

- $Var(\Delta IR_t)$ and $Cov(r_{it}, \Delta IR_t)$ are estimated based on the Bayesian Dynamic Conditional Correlation multivariate GARCH model (Bayesian DCC M-GARCH)
- Output: conditional variance-covariance matrices at each point in time for each bank
- Bayesian DCC M-GARCH: $y_t = (r_t r_{mt} p c_{1t} p c_{2t} p c_{3t})^T \sim Distr(\mu, H_t)$ with $H_t = D_t R_t D_t$
 - Elements of D_t (standard deviations) follow a GARCH (1,1) process
 - Elements of R_t (conditional correlations) depend on the unconditional correlations, the standardized returns of y_t and its history (function of R_{t-1})
 - Bayesian extension (t/normally/GED (generalized error distribution)distributed variables)

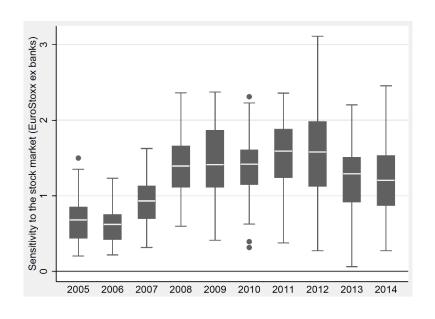

3 Measuring SSM banks' interest rate risk exposure 3.2 Data

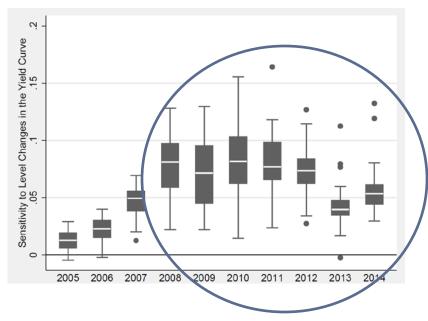
Data

 Dependent variable: banks' stock close prices (log returns) of listed SSM banks (total: 36 banks)

	AT	BE	CY	DE	ES	FR	GR	ΙE	IT	PT	Total
No. of banks	1	2	1	4	5	3	4	3	12	2	36

 Explanatory variables: market returns (EuroStoxx 50 (excl. banks, log returns)), principal components of the yield curve (level, slope, curvature)

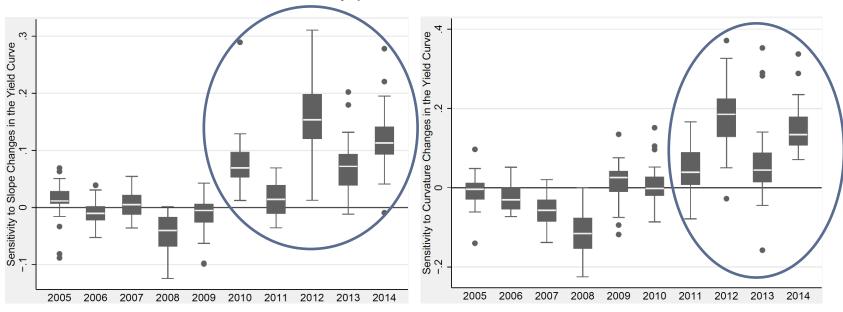



• Time period: 01/2005 to 12/2014, frequency: daily; data source: ECB and Datastream

3 Measuring SSM banks' interest rate risk exposure 3.3 Results (aggregate level)

Sensitivity to market (left figure) and to level changes (right figure)

- Box plots show the average sensitive in each year over the sample of 36 banks
- Market: banks exhibit a positive exposure to the market risk factor
- Level: sensitivity is positive, but increased considerably from 2008 onwards



3 Measuring SSM banks' interest rate risk exposure 3.3 Results (aggregate level)

Sensitivity to slope (left figure) and to curvature changes (right figure)

- Box plots show the average sensitive in each year over the sample of 36 banks
- Slope: in 2005 to 2009, the sensitivity is slightly negative or close to zero. From 2010 onwards, it becomes clearly positive
- Curvature: in 2005 to 2010, the sensitivity is slightly negative or close to zero. From 2011 onwards it becomes clearly positive

3 Measuring SSM banks' interest rate risk exposure 3.3 Results

- > SSM banks' stock prices react to all types of interest rate movements
- The exposure to level, slope and curvature changes over time: call for a dynamic model
- Curvature swings account for a significant amount of total variation in the yield curve (8.21%)
- On average, there is a positive exposure to
- level (i.e. share prices increase if the yield curve's level increases),
- slope (i.e. share prices increase if the yield curve becomes steeper)
 and
- cuvature swings (i.e. share prices increase if the yield curve is affected by a combination of decreases in mid-term rates and increases in short-term and long-term rates)

4 Explaining SSM banks' interest rate risk exposure 4.1 Methodology

Linear model

$$\widehat{\beta_{IR,t}^{(i)}} = X_{it}^T b + Y_{it}^T \theta + \varepsilon_{it}$$

with

 $\widehat{\beta_{IR,t}^{(i)}}$: sensitivity (IR \in {level $(pc_{1,t})$, slope $(pc_{2,t})$, curvature $(pc_{3,t})$ }) [results from the first step]

 X_{it} : bank-specific characteristics (accounting data, key indicators)

 Y_{it} : year- and country-fixed effects

 $\epsilon_{i,t}$: i.i.d. error terms

Reminder

- Most banks have a positive exposure to level, slope and curvature. A
 positive coefficient means that increasing independent variables leads
 to higher sensitivities and, thus, expose the bank more strongly to
 swings of the respective interest rate risk factor
- In contrast, a **negative coefficient pulls the sensitivities closer to zero** and, thus, **reduces the sensitivity** to slope swings

4 Explaining SSM banks' interest rate risk exposure 4.2 Data

Data

- Dependent variables: bank-specific interest rate sensitivities to level, slope and curvature (yearly averages)
- Independent variables: accounting data (SNL Financial: IFRS, annual basis) and key indicators
- Sample: 36 banks; time period: 2005 to 2014 (yearly data)
- Models: Full period, 2005 to 2009 and 2010 to 2014

Balance sheet composition

I Asset side

- Total financial assets to total assets
 - · Securities to total assets
 - Net customer loans to total assets

II Liability side

II.1 Equity

Core Tier capital ratio

II.2 Liabilities

- Deposits to total liabilities (and equity
- Term deposits to total liabilities (and equity)
- Total debt to total liabilities (and equity)
- Subordinated debt to total liabilities (and equity)
- Senior debt to total liabilities (and equity)
- Derivative liabilities to total liabilities (and equity)

Profitability

- Net interest income to operating revenue
- Net fee income to risk-weighted assets
- ROAA

Comparision between assets and liabilities

Net customer loans minus deposits to total assets

Asset quality

Loan loss reserves to gross customer loans

Bank size

Size = In(total assets)

4 Explaining SSM banks' interest rate risk exposure 4.3 Results

Balance sheet composition	Expected	Empirical results w.r.t.			
I Asset side	sign	Level	Slope	Curva ture	
Total financial assets to total assets	+	?	?	~	
Securities to total assets	+	?	?	+	
Net customer loans to total assets	+	+	+	+	
II Liability side II.1 Equity					
Core Tier capital ratio	-	+	٥,	+	
II.2 Liabilities					
Deposits to total liabilities (and equity)	-	ı	?	~	
 Term deposits to total liabilities (and equity) 	-	?	ı	-	
Total debt to total liabilities (and equity)	-	ı	?	-	
Subordinated debt to total liabilities (and equity)	+/-	+	~	~	
Senior debt to total liabilities (and equity)	-	-	~	-	
Derivative liabilities to total liabilities (and equity)	+/-	+°	~	+	

~: inconclusive; °: results only significant in the period 2005-2009

4 Explaining SSM banks' interest rate risk exposure 4.3 Results

<u>Profitability</u>	Expected	Empirical results w.r.t.			
	sign	Level	Slope	Curvature	
Net interest income to operating revenue	+/-	-	~	~	
Net fee income to risk-weighted assets	-	~	-	-	
• ROAA	+/-	-	+°	~	
<u>Other</u>					
Net customer loans minus deposits to total assets	+	~	+	+	
Loan loss reserves to gross customer loans	-	-	~	+	
Size = In(total assets)	+	+	+	+	

5 Conclusions

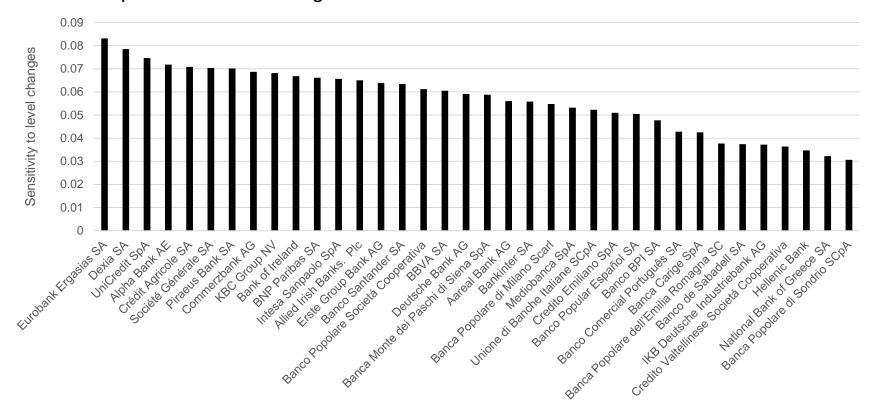
- ➤ Interest rate sensitivities vary in time
- Curvature swings have been significant in the recent years
- SSM banks hold a positive exposure to level, slope and curvature shifts
 - SSM banks share prices benefit from interest rate level, slope and curvature increases
 - Ballester/Gonzales/Soto (2009, UCLM WP) come to the same finding for Spanish banks
- Banks with larger balance sheets, higher capital ratios, a higher part of customer loans and lower part of deposits are more sensitive to interest rate risk

Bibliography

- Ballester, L., Ferrer, R., Gonzales, C., & Soto, G. (2009). Determinants
 of interest rate exposure of Spanish banking industry. UCLM Working
 Paper
- Czaja, M., Scholz, H., & Wilkens, M. (2010). Interest Rate Risk Rewards in Stock Returns of Financial Corporations: Evidence from Germany. European Financial Management, 16 (1), 124-154
- Engle, R. (2002). Dynamic conditional correlation: A simple class of multivariate autoregressive conditional heteroskedasticity models,.
 Journal of Business & Economic Statistics, 20 (3), 339-350
- English, W., Van den Heuvel, S., & Zakrajsek, E. (2014). Interest Rate Risk and Bank Equity Valuations. Working Paper, Wharton School, University of Pennsylvania
- Esposito, L., Nobili, A., & Ropele, T. (2015). The management of interest rate risk during the crisis: Evidence from Italian banks. Journal of Banking & Finance, 59, 486-504

Bibliography

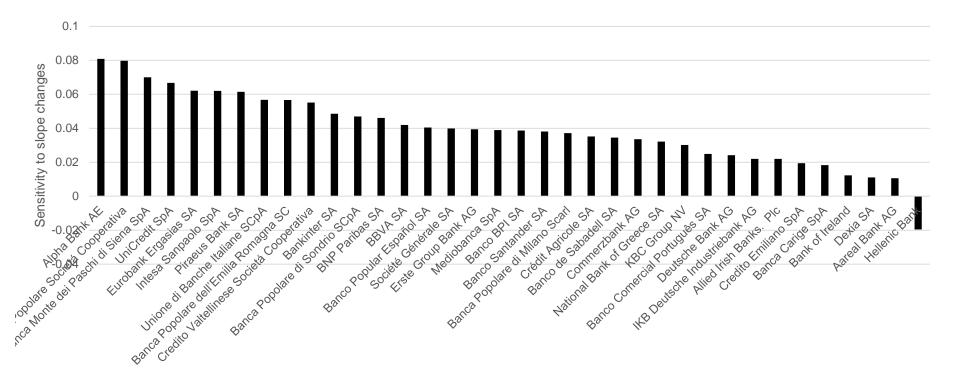
- Fioruci, J., Ehlers, R., & Filho, M. (2014). Bayesian multivariate GARCH models with dynamic correlations and asymmetric error distributions. Journal of Applied Statistics, 41 (2), 320-331
- Flannery, M., & James, C. (1984). The effect of interest rate changes on the common stock returns of financial institutions. The Journal of Finance, 39 (4), 1141-1153
- Fraser, D., Madura, J., & Weigand, D. (2002). Sources of bank interest rate risk. The Financial Review, 37 (3), 351-367
- Hasan, I., Kalotychou, E., Staikouras, S., & Zhao, G. (2013). Financial intermediaries and their risk exposure to level and slope. Working Paper


Bibliography

- Hanweck, G. & Ryu, L. (2005): The Sensitivity of Bank Net Interest Margins and Profitability to Credit, Interest-Rate, and Term-Structure Shocks Across Bank Product Specializations, FDIC WP
- Litterman, R., & Scheinkman, J. (1991). Common Factors Affecting Bond Returns. The Journal of Fixed Income, 1 (1), 54-61
- Reichert, A., & Shyu, Y. (2003). Derivative activities and the risk of international banks: a market index and VaR approach. International Review of Financial Analysis, 12 (5), 489-511
- Schuermann, T., & Stiroh, K. (2006). Visible and hidden risk factors for banks. Working Paper, Federal Reserve Bank of New York

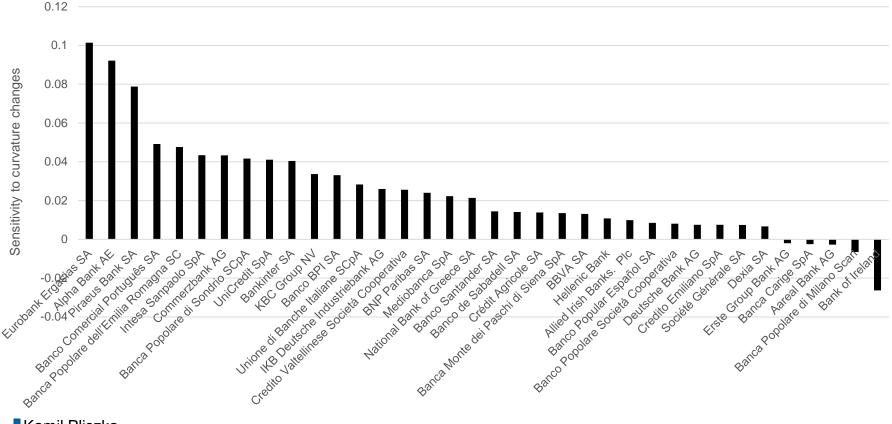
Backup I: Measuring SSM banks' interest rate risk exposure - Results (bank level)

Sensitivity to level changes


 Averaging over all years for each bank: All banks have a positive exposure to level changes

Backup I: Measuring SSM banks' interest rate risk exposure - Results (bank level)

Sensitivity to slope changes


 Averaging over all years for each bank: 35 banks a positive exposure, one bank is negatively realted to slope changes

Backup I: Measuring SSM banks' interest rate risk exposure - Results (bank level)

Sensitivity to curvature changes

 Averaging over all years for each bank: 31 banks a positive exposure, five banks are negatively realted to cuvature changes

Backup II: Explaining SSM banks' interest rate risk exposure: Results

Explaining sensitivity to level swings	
in the yield curve	

	(1a)	(1b)	(1c)	(2a) (2b)	(2c)
Regressors	Full period	2005 - 2009	2010 - 2014 H	full period	2005 - 2009 20	10 - 2014
Total financial assets to total assets	0.047	0.066	0.047			
	(0.75)	(0.71)	(0.73)			
Securities to total assets				0.024	1 -0.062	0.003
				(0.62	(-0.99)	(0.05)
Net customer loans to total assets				0.088	-0.049	0.090
				(2.03)	(-0.84)	(1.32)
Core Tier capital ratio	0.114**	0.208	0.170***	0.103*		0.101*
•	(2.48)	(1.38)	(3.67)	(2.25)	(1.16)	(1.79)
Deposits to total liabilities (and equity)	, ,		. ,	-0.119***		-0.155**
				(-3.78)	(-0.70)	(-2.50)
Term deposits to deposits				0.020	0.026	0.000
1				(0.99	(0.67)	(0.02)
Total debt to total liabilities (and equity)	-0.048	0.013	-0.076*			
• •	(-1.62)	(0.31)	(-1.87)			
Subordinated debt to total liabilities (and equity)			,	0.377**	0.309	0.198
1				(2.41)	(1.56)	(0.78)
Senior debt to total liabilities (and equity)				-0.110**	0.010	-0.177***
• •				(-3.22)	(0.19)	(-2.88)
Derivative liabilities to total liabilities (and equity)	0.008	-0.020	0.045	0.089	0.215**	0.075
	(0.19)	(-0.49)	(0.74)	(1.27	(2.48)	(0.82)
Net interest income to operating revenue	-0.011***	0.009	-0.009***	-0.003	3 -0.001	-0.007
	(-6.34)	(0.59)	(-5.29)	(-0.31	(-0.03)	(-0.62)
Net fee income to RWA	0.062	0.015	-0.035	0.097	7 0.625	-0.414
	(0.20)	(0.03)	(-0.11)	(0.26	(1.30)	(-0.98)
ROAA	-0.461**	-1.469**	-0.428**	-0.348**	-1.942***	-0.224
	(-2.59)	(-2.38)	(-2.62)	(-2.09)	(-4.58)	(-1.39)
Net customer loans minus deposits to total assets	0.050	-0.008	0.056			
•	(1.66)	(-0.19)	(1.58)			
Loan loss reserves to gross customer loans	-0.180***	-0.163	-0.241***	-0.169***	-0.189	-0.202**
C	(-2.79)	(-0.41)	(-2.81)	(-3.01)	(-0.54)	(-2.55)
Size	0.008***	0.008***	0.007***	0.005*	0.002	0.007**
	(4.91)	(3.28)	(3.39)	(2.04)	(0.76)	(2.34)
Observations	275	119	156	24	1 105	136
R^2	0.61	0.70	0.58	0.66	0.78	0.61

Backup II: Explaining SSM banks' interest rate risk exposure: Results

Explaining sensitivity to <u>slope</u> Swings in the yield curve

	(1a)	(1b)	(1c)	(2a)	(2b)	(2c)
Regressors	Full period	2005 - 2009	2010 - 2014	Full period	2005 - 2009	2010 - 2014
Total financial assets to total assets	0.105	-0.024	0.112			
	(0.66)	(-0.23)	(0.34)			
Securities to total assets				0.116	0.012	0.105
				(1.16)	(0.10)	(0.52)
Net customer loans to total assets				0.182**	-0.054	0.282*
				(2.09)	(-0.44)	(1.74)
Core Tier capital ratio	-0.014	-0.597***	0.059	0.051	-0.394*	0.042
	(-0.12)	(-3.26)	(0.48)	(0.40)	(-1.99)	(0.32)
Deposits to total liabilities (and equity)				-0.054	0.140	-0.153
				(-0.62)	(1.62)	(-0.98)
Term deposits to deposits				-0.059*	-0.073*	-0.013
				(-1.82)	(-1.72)	(-0.37)
Total debt to total liabilities (and equity)	-0.046	0.055	-0.127			
	(-0.80)	(0.91)	(-1.38)			
Subordinated debt to total liabilities (and equity)				0.227	0.343	0.321
				(0.69)	(1.13)	(0.42)
Senior debt to total liabilities (and equity)				-0.110	0.097	-0.214
				(-1.09)	(1.00)	(-1.27)
Derivative liabilities to total liabilities (and equity)	0.065	0.025	0.104	0.094	0.041	0.129
	(1.11)	(0.52)	(0.86)	(0.98)	(0.29)	(0.83)
Net interest income to operating revenue	-0.004	-0.005	-0.004	-0.020	0.010	-0.039
	(-0.86)	(-0.16)	(-0.73)	(-0.86)	(0.40)	(-1.37)
Net fee income to RWA	-0.852	-0.324	-1.715	-2.208**	* -1.569*	* -2.799**
	(-1.16)	(-0.50)	(-1.66)	(-3.05)	(-2.49)	
ROAA	-0.064	1.891***	-0.124	-0.029	2.426**	* 0.005
	(-0.14)	(2.91)	(-0.27)	(-0.06)	(4.03)	(0.01)
Net customer loans minus deposits to total assets	0.057	-0.041	0.121*			
	(1.20)	(-0.84)	(1.79)			
Loan loss reserves to gross customer loans	0.104	0.187	-0.168	0.091	0.065	-0.116
	(0.52)	(0.41)	(-0.47)	(0.53)	(0.15)	(-0.48)
Size	0.005**	-0.004	0.012**	0.008***		0.016***
	(2.19)	(-1.32)	(2.46)	(2.74)	(0.05)	(3.51)
Observations	275	119	156	241	105	136
R^2	0.76	0.54	0.59	0.76	0.58	0.55

Backup II: Explaining SSM banks' interest rate risk exposure: Results

Explaining sensitivity to <u>curvature</u> Swings in the yield curve

	(1a)	(1b)	(1c)	(2a)	(2b)	(2c)
Regressors	Full period	2005 - 2009	2010 - 2014	Full period	2005 - 2009	2010-2014
Total financial assets to total assets	0.103	0.153	0.180			
	(0.73)	(0.86)	(1.20)			
Securities to total assets				0.221*	0.116	0.339*
				(2.02)	(0.83)	(2.09)
Net customer loans to total assets				0.392***	0.194	0.495**
				(3.30)	(1.39)	(2.83)
Core Tier capital ratio	0.558***	-0.080	0.682***	0.556**	-0.052	0.647*
	(3.02)	(-0.25)	(2.84)	(2.55)	(-0.17)	(2.37)
Deposits to total liabilities (and equity)				-0.149	0.041	-0.143
				(-1.48)	(0.33)	(-1.01)
Term deposits to deposits				-0.093***	-0.019	-0.073
				(-2.77)	(-0.36)	(-1.53)
Total debt to total liabilities (and equity)	-0.193**	-0.072	-0.258**			
	(-2.48)	(-0.79)	(-2.20)			
Subordinated debt to total liabilities (and equity)				-0.411	-0.084	-0.097
				(-1.21)	(-0.23)	(-0.15)
Senior debt to total liabilities (and equity)				-0.290**	-0.084	-0.301 ³
				(-2.34)	(-0.58)	(-1.79)
Derivative liabilities to total liabilities (and equity)	0.217**	0.133	0.269*	0.194	0.071	0.271
	(2.40)	(1.54)	(1.70)	(1.50)	(0.37)	(1.00)
Net interest income to operating revenue	0.003	0.033	-0.000	0.046	0.045	0.007
	(0.59)	(1.22)	(-0.02)	(1.25)	(1.19)	(0.12)
Net fee income to RWA	-1.995*	-1.295	-1.948*	-4.244***	* -4.161**	* -3.958*
	(-2.02)	(-0.99)	(-1.80)	(-4.01)	(-4.55)	(-3.45)
ROAA	0.428	0.984	0.376	0.426	1.813	0.348
	(0.86)	(0.70)	(0.56)	(0.74)	(1.30)	(0.50)
Net customer loans minus deposits to total assets	0.135**	0.071	0.169**			
	(2.20)	(0.89)	(2.14)			
Loan loss reserves to gross customer loans	0.418*	-0.259	0.304	0.344	-0.694	0.261
	(1.73)	(-0.35)	(1.06)	(1.50)	(-1.03)	(1.04)
Size	0.003	0.002	0.003	0.010***	0.009**	0.010*
	(0.94)	(0.34)	(0.56)	(2.86)	(2.29)	(1.81)
Observations	275	119	156	241	105	136
R^2	0.78	0.68	0.66	0.79	0.71	0.66

Backup III: The DCC M-GARCH model

DCC M-GARCH model

- We consider the quasi-return vector $y_t = (r_t r_{mt} p c_{1t} p c_{2t} p c_{3t})^T \sim N(\mu, H_t)$
 - The centered random variable y_t^* can be expressed as: $y_t^* = H_t^{1/2} \epsilon_t$
- The **conditional variance-covariance matrix** H_t is a (5×5) positive definite matrix. It can be decomposed into conditional standard deviations, D_t , and a correlation matrix, R_t :

$$H_t = D_t R_t D_t$$

• The elements $h_{ii,t}^{1/2}$ in the diagonal matrix $D_t = diag(h_{r_t}^{1/2} \dots h_{pc_{3t}}^{1/2})$ are standard deviations. Each **conditional variance** $h_{ii,t}$ is assumed to follow a GARCH (1,1) process:

$$h_{ii,t} = \omega_i + \alpha_i (y_{i,t-1}^*)^2 + \beta_i h_{ii,t-1}$$

- R_t is a symmetric positive definite matrix, which elements are time-dependent conditional correlations $\rho_{ij,t}$ with $\rho_{ij,t}=1$ when i=j. Hence, the **conditional covariance** (elements of H_t) can be expressed as $h_{ij,t}=\rho_{ij,t}\sqrt{h_{li,t}\ h_{jj,t}}$
- We decompose the conditional correlation matrix $R_t = diag(Q_t)^{-\frac{1}{2}} Q_t \ diag(Q_t)^{-\frac{1}{2}}$ where Q_t is defined by

$$Q_{t} = \underbrace{(1 - \alpha - \beta)R}_{\text{constant}} + \underbrace{\alpha u_{t-1}^{T} u_{t-1}}_{\text{standardized returns}} + \underbrace{\beta Q_{t-1}}_{\text{lag}}$$

with standardized returns $u_{t-1} = D_{t-1}^{-1} y_{t-1}^* = D_{t-1}^{-1} H_{t-1}^{1/2} \epsilon_{t-1}$ and unconditional covariance matrix R of u_t