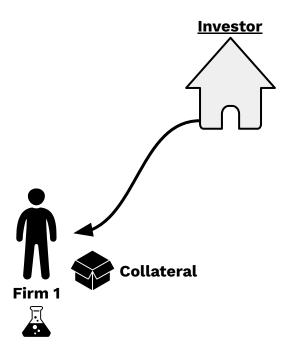
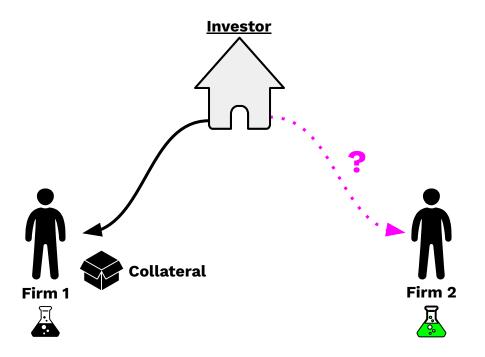
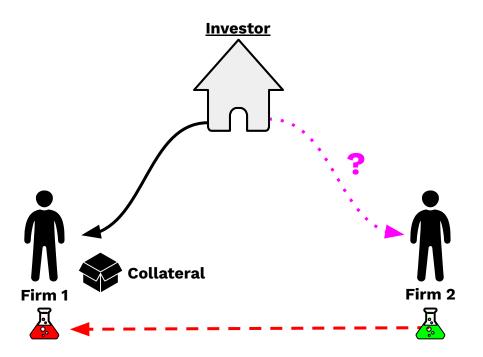
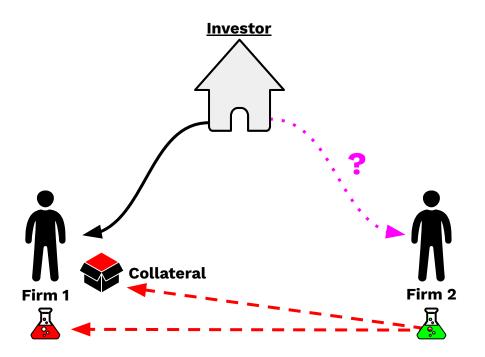
# Asset Overhang & Technological Change

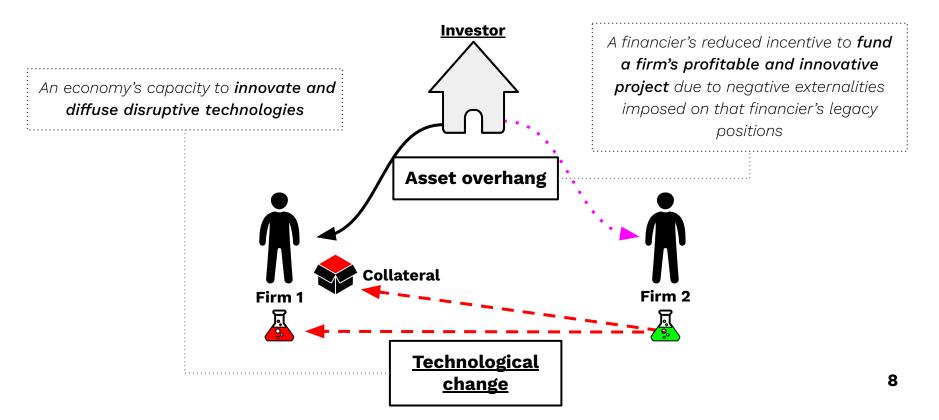

Hans Degryse<sup>1,2</sup>


Tarik Roukny<sup>1</sup>

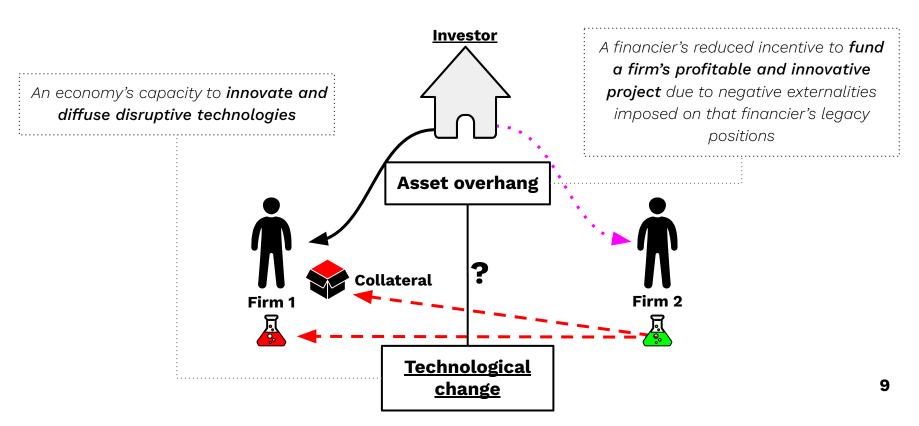

Joris Tielens<sup>3</sup>


<sup>1</sup>KU Leuven <sup>2</sup>CEPR <sup>3</sup>National Bank of Belgium

EBA Policy Research Workshop October - 2022












### This paper



### **Preview**

#### 1. Theory

#### Asset overhang hinders financing and development of technological disruption

- Findings
  - Investors internalise the cost of the externality on their portfolio and demand compensation which increases <u>rationing of innovative projects</u>
  - The extent of the barrier is determined by the **investor market structure** 
    - The higher and more homogenous is the distribution of asset overhang across the investor population, the greater is the rationing against disruptive technologies

#### 2. Empirical application to climate change

#### Financing the green tech transition: innovation and diffusion

Motivation: Large threats of tech disruption to the entire pool of investors, in particular banks

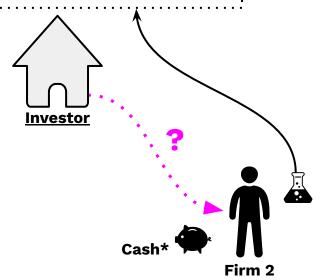
- Findings
  - Negative green externalities and legacy positions at risk
  - Rationing of green projects driven by asset overhang

### **Theory**

### Model Holmstrom & Tirole (1997) extended

(here focus on collateral)

Loan to firm 2?


$$P_HZ-I>0>P_LZ+B-I$$

#### Lending decision

- Incentive compatibility  $Z_{1E} \geq B/(\Delta P)$
- Individual rationality  $Z_{1E} \geq A/P_H$

### Project from firm 2 with cash A

- Investment I
- Return Z
- **P**<sub>H</sub> if effort
- **P**, if shirks with **B**



### Model Holmstrom & Tirole (1997) extended

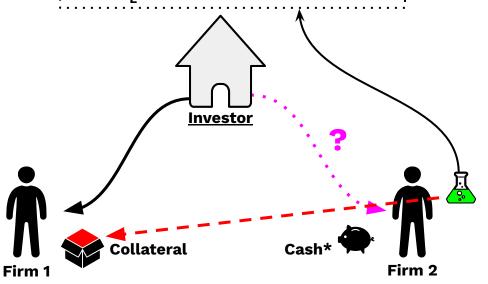
(here focus on collateral)

Loan to firm 2?

$$P_HZ-I>0>P_LZ+B-I$$

#### Lending decision

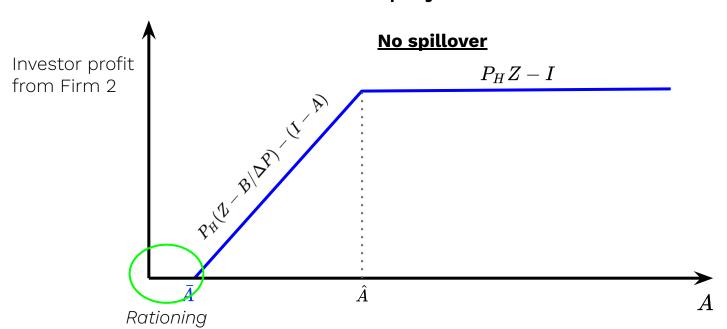
- Incentive compatibility  $Z_{1E} \geq B/(\Delta P)$
- Individual rationality  $Z_{1E} \geq A/P_H$


#### **Externality on Firm 1**

**Collateral value drop** 

$$\Delta C > 0$$

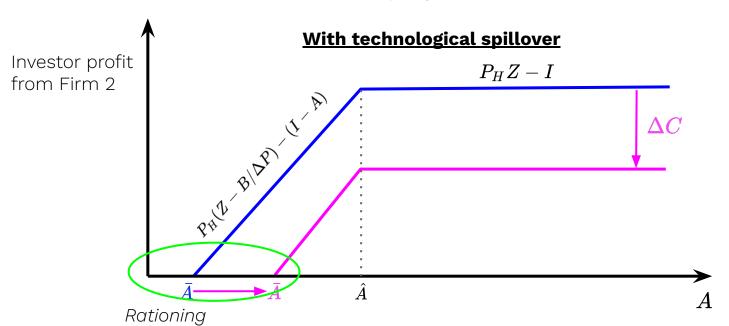
### Project from firm 2 with cash A


- Investment I
- Return Z
- **P**<sub>H</sub> if effort
- **P**, if shirks with **B**



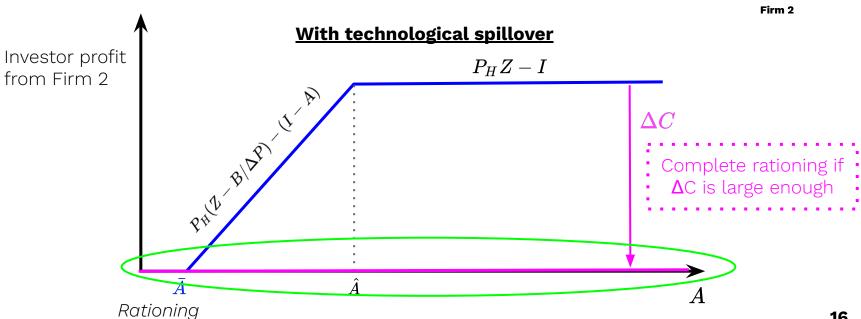


### Monopoly investor

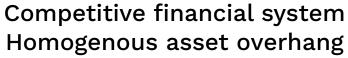




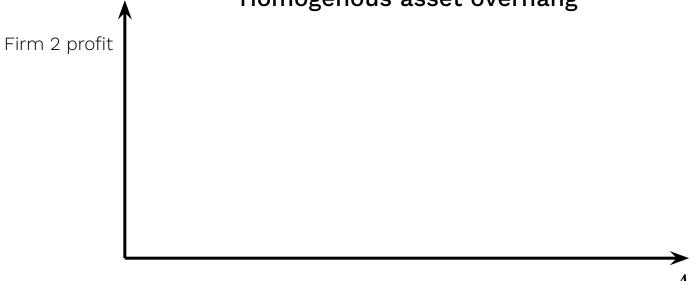


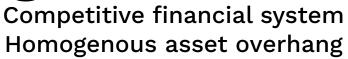


### Monopoly investor



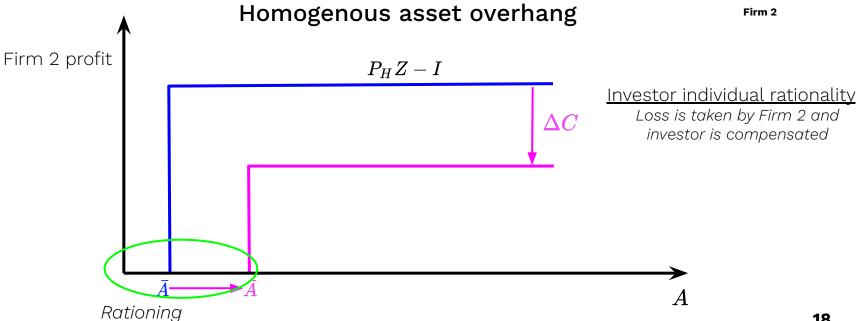






### Monopoly investor



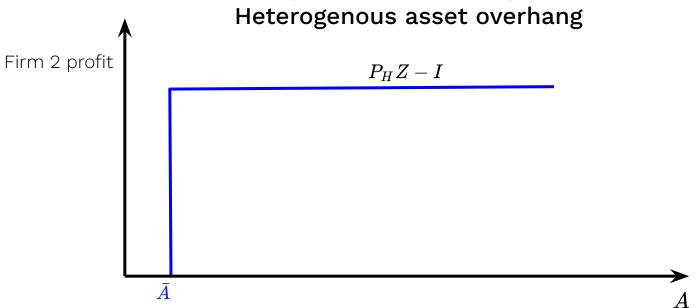


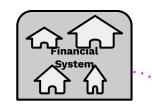







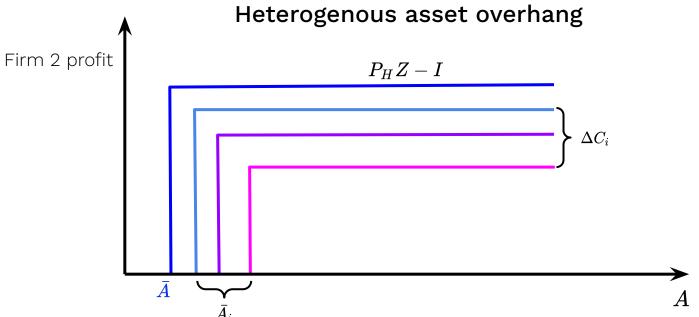


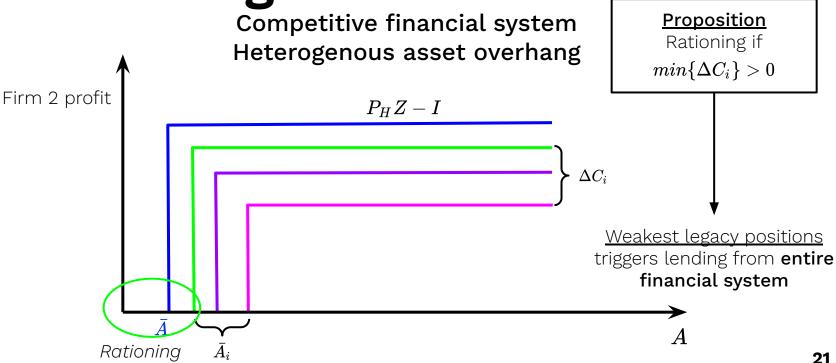






Competitive financial system






Competitive financial system







### **Discussion**

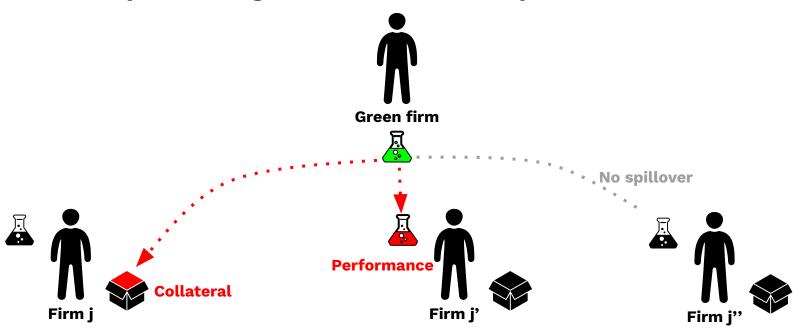
#### Model and extensions

- Nature of collateral, types of investments, information structure
- Alternative payoffs
  - Who absorbs shock? Shock on collateral only when project fails à la Stiglitz and Weiss (1981): effect dampened but qualitatively robust
- Probability of default  $\rightarrow q(D-C)$  where  $q = \Delta P_H$ 
  - Shock to Collateral and Probability of Default: reinforcement of the effect

#### **Empirical predictions**

- Legacy effect
  - An increase in exposures of the financial system to the negative externality should lead to more rationing
- Market structure effect
  - An decrease in the lowest exposures of the financial system to the negative externality should lead to less rationing

### **Empirical application**


Ţ

### **Green transition**

(Belgium)

### Step 1: which green activities affect peers and how?

### Step 1: which green activities affect peers and how?



| <u>Innov</u>  | <u>ation</u>  | <u>Diffusion</u> |                |  |  |  |  |
|---------------|---------------|------------------|----------------|--|--|--|--|
| Green Product | Green Process | Green Provision  | Green Adoption |  |  |  |  |

|                  | Innov         | ation                       | <u>Diffusion</u> |                |  |
|------------------|---------------|-----------------------------|------------------|----------------|--|
| <u>Space</u>     | Green Product | Green Product Green Process |                  | Green Adoption |  |
| Product space    |               |                             |                  |                |  |
|                  |               |                             |                  |                |  |
| Technology space |               |                             |                  |                |  |
|                  |               |                             |                  |                |  |

|                  | <u>Innovation</u> |                          |             |                 | <u>Diffusion</u> |                |             |   |
|------------------|-------------------|--------------------------|-------------|-----------------|------------------|----------------|-------------|---|
| <u>Space</u>     | Green Produ       | en Product Green Process |             | Green Provision |                  | Green Adoption |             |   |
| Product space    | Performance ?     |                          | Performance | ?               | Performance      | ?              | Performance | ? |
|                  | Collateral        | ? Collateral ?           |             | Collateral      | ?                | Collateral     | ?           |   |
| Technology space | Performance       | ance ? Performance ?     |             | ?               | Performance      | ?              | Performance | ? |
|                  | Collateral ? C    |                          | Collateral  | ?               | Collateral       | ?              | Collateral  | ? |

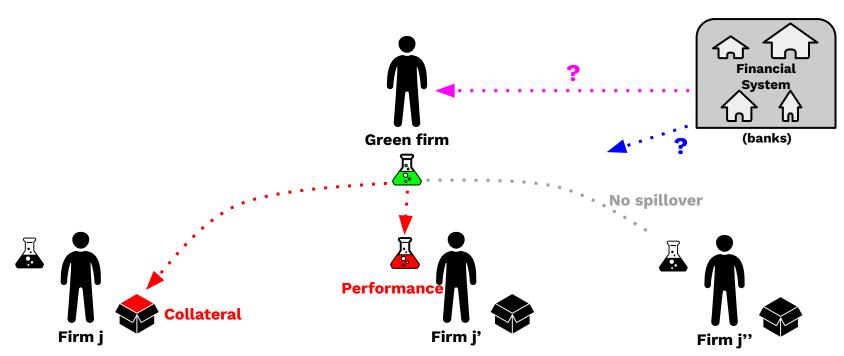
### Externalities Data sources

Patents (PATSTAT)

Structural Business Survey

| VAT transactions    | <u>Innovation</u> |               |             | <u>Diffusion</u> |             |                |             |   |
|---------------------|-------------------|---------------|-------------|------------------|-------------|----------------|-------------|---|
| Space Green Product |                   | Green Process |             | Green Provision  |             | Green Adoption |             |   |
| Product space       | Performance ?     |               | Performance | ?                | Performance | ?              | Performance | ? |
|                     | Collateral ?      |               | Collateral  | ?                | Collateral  | ?              | Collateral  | ? |
| Technology space    | ace Performance ? |               | Performance | ?                | Performance | ?              | Performance | ? |
|                     | Collateral        | ?             | Collateral  | ?                | Collateral  | ?              | Collateral  | ? |

Annual accounts, Credit registry, Bank balance-sheet


|  | NNOVATION |
|--|-----------|
|  |           |
|  |           |

|                                                                                                                   | PAN                                               | EL A: INNOVATION                                  |                                                  |                                                  |  |
|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--|
|                                                                                                                   | Firm per                                          | formance                                          | Tangible as                                      | set pledgeability                                |  |
|                                                                                                                   | $\Delta \ln (\mathrm{HH sales}_{it})$             | $\Delta \ln (B2B \text{ sales}_{it})$             | $Writedowns_{it}$                                | ${\it Liquidation } {\it loss}_{it}$             |  |
|                                                                                                                   | (1)                                               | (2)                                               | (3)                                              | (4)                                              |  |
| $\overline{\Delta d(i,t)} \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$                               | -0.067***<br>(0.005)                              | -0.022*** $(0.003)$                               | -0.029 (0.168)                                   | 0.722<br>(2.372)                                 |  |
| $\overline{\Delta d(i,t)}_{\mathcal{S}=\text{product space}}^{\mathcal{A}=\text{process innovation}}$             | -0.021***<br>(0.003)                              | -0.004*<br>(0.002)                                | -0.077 $(0.137)$                                 | -0.677 (1.580)                                   |  |
| $\overline{\Delta d(i,t)}_{\mathcal{S}=\text{technology space}}^{\mathcal{A}=\text{product innovation}}$          | 0.000<br>(0.003)                                  | 0.001<br>(0.002)                                  | 0.000<br>(0.029)                                 | -0.314 (0.180)                                   |  |
| $\overline{\Delta d(i,t)} {\overset{\mathcal{A}=\text{process innovation}}{\mathcal{S}=\text{technology space}}}$ | 0.003<br>(0.003)                                  | -0.002 (0.002)                                    | 0.208**<br>(0.092)                               | 0.352*<br>(0.180)                                |  |
| Controls Sector $\times$ Time FE Location $\times$ Time FE Firm FE Cluster-level # Observations $Adj. R^2$        | Y<br>4 digit<br>Y<br>Y<br>Firm<br>428180<br>0.159 | Y<br>4 digit<br>Y<br>Y<br>Firm<br>526016<br>0.101 | Y<br>3 digit<br>Y<br>N<br>Firm<br>76397<br>0.024 | Y<br>3 digit<br>Y<br>N<br>Firm<br>33625<br>0.129 |  |

|                  | <u>Innovation</u>         |                             |               |                    | <u>Diffusion</u> |                    |               |          |
|------------------|---------------------------|-----------------------------|---------------|--------------------|------------------|--------------------|---------------|----------|
| <u>Space</u>     | Green Produ               | Green Product Green Process |               | Green Provision    |                  | Green Adoption     |               |          |
| Product space    | <u>Performance</u>        | Performance ↓ Performance ↓ |               | <u>Performance</u> | <b>\</b>         | <u>Performance</u> | <b>.</b>      |          |
|                  | Pledgeability             | Ø                           | Pledgeability | Ø                  | Pledgeability    | Ø                  | Pledgeability | Ø        |
| Technology space | ology space Performance Ø |                             | Performance   | Ø                  | Performance      | Ø                  | Performance   | Ø        |
|                  | Pledgeability Ø           |                             | Pledgeability | <b>↓</b>           | Pledgeability    | Ø                  | Pledgeability | <b>.</b> |

### **Step 2: What is the impact of asset overhang?**

Step 2: What is the impact of asset overhang?



### Asset overhang values

Firms impacted by green activity from firm i

$$\mathcal{I}^{\mathcal{A}}_{it}$$
  $\mathcal{A} = \{Green_i, Innovator_i, Diffusor_i\}$ 

Legacy of bank b at risk from green firm i

$$heta_{ibt}^{\mathcal{A}} = \sum_{j \in \mathcal{I}_{it}^{\mathcal{A}}} c_{jbt}$$
 Share of credit by bank b to firm j at time t

Financial system at risk from green firm i

$$m{ heta}_{it}^{\mathcal{A}} = ( heta_{ibt}^{\mathcal{A}})$$

### **Extensive margin**

$$Borrower_{it} = \beta_1 \times \mathcal{A} + \beta_2 \times Med(\boldsymbol{\theta}_{it-1}^{\mathcal{A}}) + \beta_3 \times Min(\boldsymbol{\theta}_{it-1}^{\mathcal{A}}) + \boldsymbol{\zeta}'\boldsymbol{z}_{it-1} + \varepsilon_{it}$$

$$Legacy \ effect$$

$$= 1 \ if \ firm \ \textit{i} \ has \ credit \ at \ \textit{t}$$

$$Market \ structure \ effect$$

#### From the theory

- β<sub>2</sub> < 0
   <p>The larger the banking system's asset overhang, the less likely a green firm gets a loan
- β<sub>3</sub> < 0</li>
   The lower the weakest asset overhang, the more likely a firm gets a loan

### Results

#### Baseline

#### 1. Legacy effect

▶ green firm with 1 s.d. negative impact on banks is credit rationed compared to an absence of overhang

Innovators  $\rightarrow$  **4.4 pp** Diffusors  $\rightarrow$  **1.0 pp** 

#### 2. Market structure effect

→ 1 s.d. drop in the lowest overhang increases bank credit to green firm

Innovators  $\rightarrow$  **5.3** pp Diffusors  $\rightarrow$  **1.3** pp

Legacy effect muted

#### Further analysis

- Decomposition by green activity, externality, maturity, firm size, etc.
- Breaking the barrier
- Intensive margin

|                                                                      | Dependent va            | riable: Borrowe         | $\mathbf{r}_{it}$       |                         |
|----------------------------------------------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
|                                                                      | (1)                     | (2)                     | (3)                     | (4)                     |
| $Green_i$                                                            | $-3.162^{***}$ (0.337)  | -3.082*** $(0.351)$     |                         |                         |
| Green innovation $i$                                                 |                         |                         | -1.135 (2.022)          | -1.288 (1.086)          |
| Green diffusion $_i$                                                 |                         |                         | -3.300*** $(0.337)$     | -3.231*** $(0.221)$     |
| $Med(oldsymbol{	heta}_{it-1}^{\mathcal{A}=Green})$                   |                         | $-1.397^*$ (0.863)      | ,                       |                         |
| $Min(oldsymbol{	heta}_{it-1}^{\mathcal{A}=Green})$                   |                         | -3.179**<br>(1.428)     |                         |                         |
| $Med(m{	heta}_{it-1}^{\mathcal{A}=Green\ innovation})$               |                         |                         |                         | -11.314**<br>(5.453)    |
| $Min(oldsymbol{	heta}_{it-1}^{\mathcal{A}=Green\ innovation})$       |                         |                         |                         | -19.343**<br>(8.631)    |
| $Med(m{	heta}_{it-1}^{\mathcal{A}=\operatorname{Green\ diffusion}})$ |                         |                         |                         | -1.394* (0.787)         |
| $Min(oldsymbol{	heta}_{it-1}^{\mathcal{A}=Green\ diffusion})$        |                         |                         |                         | -3.086**<br>(1.281)     |
| $\mathcal{A}$ : Green                                                |                         |                         |                         |                         |
| Legacy effect                                                        |                         | -1.008                  |                         |                         |
| Market structure effect                                              |                         | -1.318                  |                         |                         |
| $\mathcal{A}$ : Green innovation                                     |                         |                         |                         |                         |
| Legacy effect                                                        |                         |                         |                         | -4.369                  |
| Market structure effect                                              |                         |                         |                         | -5.292                  |
| $\mathcal{A}$ : Green diffusion                                      |                         |                         |                         |                         |
| Legacy effect                                                        |                         |                         |                         | -1.006                  |
| Market structure effect                                              |                         |                         |                         | -1.280                  |
| Controls<br>Sector × Time FE<br>Location × Time FE                   | 4 digit<br>Y            | 4 digit<br>Y            | 4 digit<br>Y            | 4 digit<br>Y            |
| Cluster-level<br># Observations<br>Adj. R <sup>2</sup>               | Firm<br>654689<br>0.185 | Firm<br>654689<br>0.185 | Firm<br>654689<br>0.185 | Firm<br>654689<br>0.185 |

# **Policy discussion**

Promote investors incentives to stimulate entry and diffusion of disruptive technology (e.g. green technology)

#### **Policies**

- 1. Alternative models
  - Entry of legacy free institutions ( $\Delta C = 0$ )
  - Develop alternative financing sources to disruptive projects (green)
- 2. Collateral policies
  - Promote tech insensitive collateral ( $\Delta C = 0$ )
- 3. Macroprudential tools
  - o Brown legacy penalty ( $\Delta M > \Delta C$ )
- 4. Other applications
  - Niche technologies, developing economies, public monopoly

#### Market structure effect

Weakest exposure sets the rationing barrier for entire financial system

J

Entry/presence of a **single legacy-free institution** transforms aggregate provision of funding directed to disruptive technologies **beyond individual capacity** 

## Conclusion

- Asset overhang theory: legacy may induce investors to bar the financing of technological change (i.e., entry and development of disruptive technology)
  - Key role of market structure on asset overhang
- In the context of climate finance and the green transition
  - Empirical evidence shows that green activity adversely affects competing firms' operations and asset pledgeability;
  - Empirical evidence shows that banks' legacy positions and overhang distribution are important drivers of access to bank finance for green firms both at extensive and intensive margin.
- <u>Policies</u> accounting for discrepancies in legacy exposures to technological disruption may be key to aligning incentives and re-directing funding towards otherwise profitable innovative projects

### Thank you!

# **Empirical strategy**

#### Step 1: Measuring green externality

- Green technological transition
  - Green innovation
    - Process vs Product
  - Green diffusion
    - Adoption vs Provision
- Economic spaces
  - Product space
  - Technology space
- Economic impact
  - Firm performance
  - Collateral value

#### Goals

- 1. Evidence of negative spillovers
- Identification of channels for impact on performance and collateral
- 3. Framework to quantify overhang (legacy risk)

#### Step 2: Impact of asset overhang on technology rationing

- Extensive margin
- Matching
- Intensive margin

# **Empirical strategy**

#### Step 1: Measuring green externality

- Green technological transition
  - Green innovation
  - Green diffusion
- Economic spaces
  - Product space
  - Technology space
- Economic impact
  - Firm performance
  - Collateral value

#### Step 2: Impact of asset overhang on technology rationing

- Extensive margin
- Matching
- Intensive margin

#### **Data sources**

Patents (PATSTAT)

Structural Business Survey

VAT transactions

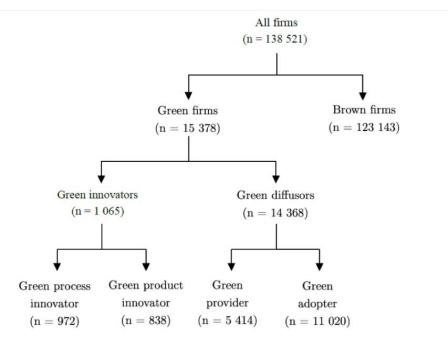
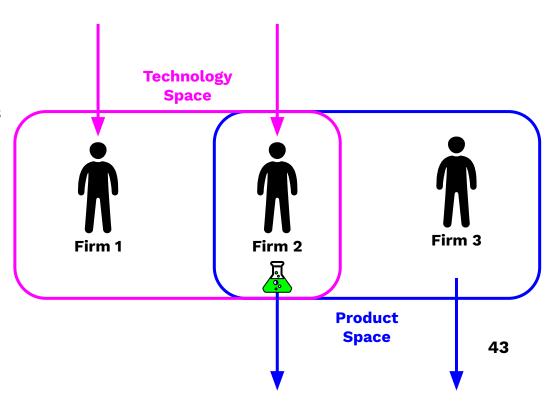
Annual accounts, Credit registry

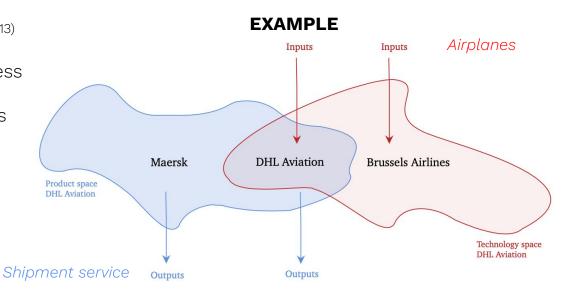
Bank balance sheets

-

Credit registry

- Green activity (Hall, 2004)
  - Innovation
    - Product
    - Process
  - o Diffusion
    - Adoption
    - Provision

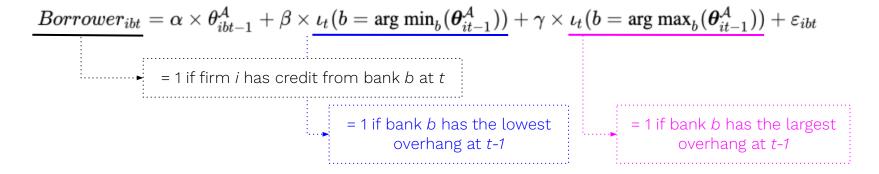


Figure 3: Incidence of various green activities by Belgian non-financial firms.

- Green activity (Hall, 2004)
- Economic spaces (Bloom, 2013)
  - Product space
    - Output closeness
  - o Technology space
    - Input closeness



- Green activity (Hall, 2004)
- Economic spaces (Bloom, 2013)
- Green impact
  - Performance decline
    - $\blacksquare$   $\triangle$  HH sales
    - ∆ B2B sales
  - Asset pledgeability
    - Writedowns
    - Liquidation losses

- Green activity (Hall, 2004)
- Economic spaces (Bloom, 2013)
  - Product space
    - Output closeness
  - Technology space
    - Input closeness




## **Externalities**

|                  | <u>Innovation</u>  |          |                    |          |                     |
|------------------|--------------------|----------|--------------------|----------|---------------------|
| <u>Space</u>     | Green Product      |          | Green Process      |          |                     |
| Product space    | <u>Performance</u> | <b>+</b> | <u>Performance</u> | <b>+</b> | $qR_B>0$            |
|                  | Pledgeability      | Ø        | Pledgeability      | Ø        |                     |
| Technology space | Performance        | Ø        | Performance        | Ø        |                     |
|                  | Pledgeability      | Ø        | Pledgeability      | <b>\</b> | $igg  \Delta C > 0$ |

Same results for **diffusion** 

# **Breaking the barrier**



#### Interpretation

- $\beta > 0$  suggests it is the bank with the lowest asset overhang that breaks the barrier
- ho  $\gamma$  > 0 suggests it is the bank with the largest asset overhang that breaks the barrier

# **Breaking the barrier**

Bank with lowest
asset overhang
is more likely
to break the barrier

| Dependent variable: Borrower $_{ibt}$                                                     |                       |                              |                          |  |  |
|-------------------------------------------------------------------------------------------|-----------------------|------------------------------|--------------------------|--|--|
|                                                                                           | (1)                   | (2)                          | (3)                      |  |  |
| Estimation sample:                                                                        | $Green_i = 1$         | Green innovation $_i = 1$    | Green diffusion $_i =$   |  |  |
| $	heta_{ibt-1}^{\mathcal{A}=Green}$                                                       | -49.527*** $(15.079)$ |                              |                          |  |  |
| $\iota_t(b = rg \min_b(oldsymbol{	heta}_{it-1}^{\mathcal{A}=Green}))$                     | 8.362***<br>(1.126)   |                              |                          |  |  |
| $\iota_t(b = rg \max_b(oldsymbol{	heta}_{it-1}^{\mathcal{A} = \operatorname{Green}}))$    | -7.114*** (1.610)     |                              |                          |  |  |
| $	heta_{ibt-1}^{\mathcal{A}=\operatorname{Green}}$ innovation                             |                       | $-380.730^{***}$ $(131.150)$ |                          |  |  |
| $\iota_t(b = rg \min_b(oldsymbol{	heta}_{it-1}^{\mathcal{A} = Green innovation}))$        |                       | 21.675**<br>(10.637)         |                          |  |  |
| $u_t(b = \arg\max_b(\boldsymbol{\theta}_{it-1}^{\mathcal{A} = \text{Green innovation}}))$ |                       | 9.438 $(6.763)$              |                          |  |  |
| $	heta \mathcal{A}=$ Green diffusion $ibt-1$                                              |                       |                              | -48.995*** $(14.955)$    |  |  |
| $u_t(b = rg \min_b(oldsymbol{	heta}_{it-1}^{A=\operatorname{Green diffusion}}))$          |                       |                              | 8.272***<br>(1.071)      |  |  |
| $u_t(b = rg \max_b(oldsymbol{	heta}_{it-1}^{\mathcal{A}=Green \ diffusion}))$             |                       |                              | $-6.969^{***}$ $(1.555)$ |  |  |
| Sector × Time FE<br>Location × Time FE<br>Cluster                                         | Y<br>4-digit          | Y<br>1-digit<br>-Y-          | Y<br>4-digit             |  |  |
| # Observations<br>Adj. R <sup>2</sup>                                                     | 6960<br>0.105         | $1\overline{7}5$ 0.339       | 6825<br>0.102            |  |  |

Damandant ramiable, Damarra

## Intensive margin

$$\Delta ln(Credit_{ibt}) = lpha imes \Delta heta_{ibt-1}^{\mathcal{A}=\mathsf{Green}} + eta imes \Delta Min(oldsymbol{ heta}_{it-1}^{\mathcal{A}=\mathsf{Green}}) + \gamma_{bt} + \gamma_{gt} + arepsilon_{ibt}$$

Decrease in the lowest asset overhang are associated with more credit expansion towards green firms.

|                                                                            | 1 / '              | 10t + 19t +                | -101                       |  |  |  |  |
|----------------------------------------------------------------------------|--------------------|----------------------------|----------------------------|--|--|--|--|
| Dependent variable: $\Delta \ln(\operatorname{Credit}_{ibt})$              |                    |                            |                            |  |  |  |  |
|                                                                            | (1)                | (2)                        | (3)                        |  |  |  |  |
| Estimation sample:                                                         | $Green_i = 1$      | Green innovation $_i = 1$  | Green diffusion $_i = 1$   |  |  |  |  |
|                                                                            |                    |                            |                            |  |  |  |  |
| $\Delta	heta_{ibt-1}^{\mathcal{A}=	ext{Green}}$                            | 2.724              |                            |                            |  |  |  |  |
| 101-1                                                                      | (1.816)            |                            |                            |  |  |  |  |
| 1.15: (0.4—Green)                                                          | T 000#             |                            |                            |  |  |  |  |
| $\Delta Min(m{	heta}_{it-1}^{A=	ext{Green}})$                              | -5.302*            |                            |                            |  |  |  |  |
|                                                                            | (3.213)            |                            |                            |  |  |  |  |
| $\Delta \theta_{ibt-1}^{\mathcal{A}=Green}$ innovation                     |                    | -7.989                     |                            |  |  |  |  |
| 100 1                                                                      |                    | (10.129)                   |                            |  |  |  |  |
| $\Delta Min(oldsymbol{	heta}_{it-1}^{\mathcal{A}=	ext{Green innovation}})$ |                    | -28.004*                   |                            |  |  |  |  |
| $\Delta min(\theta_{it-1})$                                                |                    | (17.181)                   |                            |  |  |  |  |
|                                                                            |                    | (17.101)                   |                            |  |  |  |  |
| $\Delta 	heta_{ibt-1}^{\mathcal{A}=\operatorname{Green diffusion}}$        |                    |                            | 2.957                      |  |  |  |  |
|                                                                            |                    |                            | (1.839)                    |  |  |  |  |
| $\Delta Min(m{	heta}_{it-1}^{\mathcal{A}=Green\ diffusion})$               |                    |                            | -5.894*                    |  |  |  |  |
| it-1                                                                       |                    |                            | (3.247)                    |  |  |  |  |
| 1.0                                                                        |                    |                            | <u> </u>                   |  |  |  |  |
| $A$ : Green $\Delta$ Market structure effect                               | -0.045             |                            |                            |  |  |  |  |
| A: Innovator                                                               | -0.045             |                            |                            |  |  |  |  |
| Δ Market structure effect                                                  |                    | -0.111                     |                            |  |  |  |  |
| $\mathcal{A}$ : Diffusor                                                   |                    |                            |                            |  |  |  |  |
| $\Delta$ Market structure effect                                           |                    |                            | -0.050                     |  |  |  |  |
| Controls                                                                   | Y<br>Y             | <u>Y</u>                   | Y.                         |  |  |  |  |
| Bank × Time FE<br>Loc. ×Sect. × Size × Time FE                             | Y                  | Ÿ<br>Ÿ                     | Y                          |  |  |  |  |
| Location                                                                   | Region             | Region                     | Region                     |  |  |  |  |
| Assets<br>Sector                                                           | Decile<br>3 digits | Decile<br>2 digits<br>Bank | Decile<br>3 digits<br>Bank |  |  |  |  |
| Cluster<br># Observations                                                  | Bañk<br>108235     | Baňk<br>078                | Bañk<br>107618             |  |  |  |  |
| # Observations<br>Adj. R <sup>2</sup>                                      | 0.037              | 978<br>0.029               | 0.037                      |  |  |  |  |