Bond Convenience Curves and Funding Costs

Juuso Nissinen¹ Markus Sihvonen² September 2023

¹Aalto University

²Bank of Finland

Introduction

- Consider two EUR-denominated investments with same duration
 - 1. buy a German bond
 - 2. buy a synthetic safe bond: Italian bond + CDS
- Both have same cash flows \Rightarrow yields should equal
- The latter trades on average at 40bps higher yield, gap spikes in a crisis
- New policy interest due to ECB's Transmission Protection Instrument (announced July 2022)
 - activated if "experiencing a deterioration in financing conditions not warranted by country-specific fundamentals"

European Central Bank + Add to myFT
Spread betting: how will the ECB's new bond- buying tool work?
Policymakers hope new programme will give central bank cover to raise rates without

• The gap has several names: inconvenience yield (Jiang et al. 22), CDS-bond basis, segmentation premium

$$icy_t^i(\tau) = y_t^i(\tau) - cds_t^i(\tau) - (y_t^{DE}(\tau) - cds_t^{DE}(\tau)),$$

This paper:

- Two assumptions explain eurozone sovereign inconvenience curves:
 - Funding costs on riskier bonds higher
 - Funding costs uncertain and arbitrageurs risk averse
- Use exogeneous changes in Eurosystem haircuts to find causal evidence that funding costs affect yields
- Changes in inconvenience yields key for monetary policy transmission to yields spreads

Facts

Stylized Fact 1

Riskier bonds, as measured by CDS premia, command higher inconvenience yields (weaker time-series relation)

plots the average inconvenience yield for each country against the corresponding average CDS premium.

Inconvenience yields are associated with funding costs and funding risks.

	(1) ICY (\overline{icy}_t^i)	(2) ICY (\overline{icy}_t^i)	(3) ICY Slope $icy_t^i(10Y) - icy_t^i(1Y)$	(4) ICY Change $\Delta^{1M} icy_t^i(1Y)$
CDS diff. $(\overline{cds}_t^i - \overline{cds}_t^{DE})$	0.037* (1.79)			
Repo rate diff.	. ,	0.80**		
		(2.19)		
Repo rate vol.			3.24***	
			(3.47)	
ICY Slope $icy_t^{\prime}(10Y) - icy_t^{\prime}(1Y)$				0.106***
				(2.61)
R ²	0.084	0.140	0.050	0.042
Country fixed effects	х	х	x	x
Note:			* p<0.1; ** p<	0.05; ***p<0.01

Stylized Fact 3

The inconvenience curve is upward sloping on average

the average term structure of inconvenience yields. For each maturity the inconvenience yields are averaged both over time and countries.

Model

- Builds on Vaynos & Vila (20) but with two countries and differential bond funding costs
- Debt issued by core riskless but that issued by periphery not
 - Default given by a Poission jump process with default intensity ψ and severity δ
- An arbitrageur (banks + hedge funds) trades all bonds
- Also preferred habitat investors
 - Demand shock induces funding risk since it implies arbitrageurs must finance more bonds.
- · Bond funding costs depend on risk as well as bond funding market liquidity.
- Key assumptions: periphery funding cost $\Lambda_t \ge 0$ and uncertain.

 $\Lambda_t =$

Constant × Default probability × Amount of bonds financed $\equiv \lambda B_t^*$

- Model admits an affine solution for the prices of core, periphery and synthetic safe bonds as well as CDS premia.
- These depend on maturity, level of short rates and the demand shock

Proposition 2 We can decompose a τ -maturity inconvenience yield to an expected funding cost component and a funding risk component:

$$\mathsf{icy}(au) pprox rac{1}{ au} \mathbb{E}_t \int_t^{t+ au} egin{smallmatrix} \mathsf{h}_s \mathsf{d}s + \mathsf{Funding} \ \mathsf{risk}_t \end{bmatrix}$$

Here $icy_t(\tau) \rightarrow \Lambda_t$ as $\tau \rightarrow 0$. The short end of the convenience yield curve is determined by the current funding cost. The long end also reflects expected future funding costs and a funding risk premium.

Causal Evidence for the impact of funding costs

- · Key financial intermediaries in the bond market rely on external financing
 - Bonds financed through repo market or through more expensive unsecured funding(unsecured loans, deposits etc.)
- Collateralized funding can be obtained either from the private repo market or Eurosystem
 - Eurosystem TLTRO rates competetive for Italian bonds, but not German
- Funding cost of Italian bond depend on the funding rate and haircut
 - Haircut specifies the amount of funding available for a given collateral

Eurosystem Haircuts

- All eligible Italian bonds have a public Eurosystem haircut
- · Focus on haircut changes due to switches in maturity
- Switches depend only on bond's issue date, current date and the thresholds
- For each bond switching buckets there is a control group of similar bonds

Effects of Eurosystem Haircuts on Italian Yields

	$\Delta Yield$					
	(1)	(2)	(3)	(4)		
HCI	0.30	0.02	0.20			
ner	(-0.74)	(-1.61)	(-1.43)			
HCI1	-1.36***	-0.39***	-0.36***			
	(-3.44)	(-3.08)	(-2.83)			
HCI2	-0.44	-0.23	-0.19			
	(-1.05)	(-1.41)	(-1.20)			
HCIALL				-0.25 ^{***} (-3.35)		
# of Obs.	625981	625981	625981	625981		
R ²	0.0001	0.0000	0.0000	0.0000		
Bond fixed effects			x	×		
Time fixed effects		х	х	×		

- *HCI* is indicator variable that gets value of one on the date the haircut changes in Eurosystem data, published at 18.15 CET on ECB's website
- NO effect for German bonds
- NO effect for CDS
- NO effect when integer part of maturity changes without haircut change

Convenience yields and unconventional monetary policy

Policy	ICY Share
Collateral Policy Changes	66 %
Securities Market Program	39 %
Outright Monetary Transactions Program	9 %
Draghi Whatever-It-Takes Speech	15 %
Extended APP	36 %
PEPP	54 %
Liquidity Support	38 %
Average	48 %

shows the share of yield spread changes around monetary policy announcements that are due to changes in inconvenience yields.

- Two assumptions explain eurozone sovereign inconvenience curves:
 - Funding costs on riskier bonds higher
 - Funding costs uncertain and arbitrageurs risk averse
- Use exogeneous changes in Eurosystem haircuts to find causal evidence that funding costs affect yields
- Changes in inconvenience yields key for monetary policy transmission to yields spreads