

DeFi leverage

EBA 2023 Policy Research Workshop 8 November, 2023

Lioba Heimbach and Wenqian Huang

Disclaimer: The views are our own and not necessarily those of the BIS

Motivation

- ▶ Decentralised finance (DeFi) has experienced rapid growth from 2020
 - ▶ Lending takes a prominent role: \$35 bln deposit and \$25 bln debt at its peak
 - ▶ User behavior and pool dynamics on lending protocols remain largely unstudied
- Collateralised borrowing is not new in traditional finance
 - > Data availability of DeFi lending could shed light on leverage taking behaviour
 - > DeFi lending could provide an innovative design for repo and securities lending
 - ▶ Note: market design could be completely orthogonal to underlying technology

Main results

- ▶ We document DeFi leverage for wallets interacting with lending platforms
 - ▶ Actual leverage << implied leverage by loan-to-value requirement (LTV)
 - ▶ The largest users and the most active ones take higher leverage
 - \blacktriangleright The majority of the users pledge VC as collateral and borrow SC \rightarrow similar to repo

Main results

- ▶ We document DeFi leverage for wallets interacting with lending platforms
 - ▶ Actual leverage << implied leverage by loan-to-value requirement (LTV)
 - ▶ The largest users and the most active ones take higher leverage
 - \blacktriangleright The majority of the users pledge VC as collateral and borrow SC \rightarrow similar to repo
- ▶ We identify the factors associated with high leverage
 - Leverage decreases in more stringent LTV requirements and borrow rate, and increases in market sentiment
 - ► The gap between the actual leverage and the LTV-implied leverage is driven by the looming threat of automatic liquidation instead of the search-for-yield motive

Main results

- ▶ We document DeFi leverage for wallets interacting with lending platforms
 - ▶ Actual leverage << implied leverage by loan-to-value requirement (LTV)
 - ▶ The largest users and the most active ones take higher leverage
 - \blacktriangleright The majority of the users pledge VC as collateral and borrow SC \rightarrow similar to repo
- ▶ We identify the factors associated with high leverage
 - Leverage decreases in more stringent LTV requirements and borrow rate, and increases in market sentiment
 - ► The gap between the actual leverage and the LTV-implied leverage is driven by the looming threat of automatic liquidation instead of the search-for-yield motive
- High borrower leverage could affect lending resilience and market liquidity
 - ▶ When borrower leverage is high, a larger share of lending pools are put at risk
 - Conditional on the occurrence of collateral selection, borrowers with high leverage tend to tilt towards volatile collateral more aggressively
 - ► High leverage increases liquidity provision in decentralised exchanges

Literature

- ▶ **DeFi and crypto in general**: Chiu et al (2022), Lehar and Parlour (2022), Liu et al (2022), Capponi and Jia (2022), Gudgeon et al (2020), Qin et al (2021), Heimbach et al (2023)
 - ▶ We document DeFi leverage and its impact on resilience and liquidity
- Leverage: Adrian and Shin (2010, 2014), Geanakoplos (2001, 2010), Fostel and Geanakoplos (2014), Ang et al (2011), Kaharaman and Tookes (2017)
 - ▶ Given the granular transaction data, we study the driving factors behind leverage
- Repo markets: Duffie et al (2002), Gorton and Metrick (2009, 2012), Krishnamurthy et al (2014), Copeland et al (2014), Infante (2019), Julliard et al (2022)
 - ▶ The supply-demand dynamics in DeFi lending could shed light on repo market design

Roadmap

- The mechanics of DeFi lending
- DeFi leverage: overall trend and group differences
- ▶ Factors associated with high leverage
- ▶ The impact of high leverage on lending resilience and market liquidity
- ▶ Conclusion: lessons for traditional finance

The mechanics of DeFi lending

- ▶ In this paper, we document wallet-level leverage in DeFi: wallets \equiv users
- ► Two concepts of leverage
- \blacktriangleright Implied leverage from the loan-to-value ratio requirement \rightarrow Leverage¹

		Aave v	2	Compound			
	LTV	Haircut	Leverage'	LTV	Haircut	Leverage'	
USDC	0.800	0.200	5.000	0.855	0.145	6.897	
USDT	0.000	1.000	1.000	0.000	1.000	1.000	
DAI	0.750	0.250	4.000	0.835	0.165	6.061	
ETH	0.825	0.175	5.714	0.825	0.175	5.714	
BTC	0.720	0.280	3.571	0.700	0.300	3.333	

Table: Loan-to-value (LTV) ratio and implied leverage.

 \blacktriangleright Actual leverage: asset-to-equity ratio \rightarrow Leverage

The mechanics of DeFi lending

- Similar to a repo transaction, a user can deposit VC and use them as collateral to borrow SC
- ▶ The user can lever up by using the borrowed SC to buy more VC

The mechanics of DeFi lending

- ▶ Similar to securities lending, a user can deposit SC and borrow the desired VC
- ▶ The user could short sell the borrowed VC, or use them for voting purpose

Data

- We collect on-chain data of all wallets that took out debt from major DeFi lending platforms on Ethereum network
- Sample period: Jan 2021 March 2023
- Debt: a user's outstanding debt across platforms
- Asset: a user's total assets including coins not in lending platforms
- ► Equity: Asset Debt

Panel A: Overall sample								
Platform	#Wallets (Unit)	#Obs (Unit)	Ratio (Unit)	Debt (\$)	Asset (\$)	Equity (\$)		
AAVEV1	4,629	1,358,940	294	224,498	607,759	383,261		
AAVEV2	42,123	9,625,813	229	340,479	685,142	344,662		
CompoundV2	16,836	5,862,197	348	985,870	1,752,627	766,757		
Total	57,555	13,094,094	228	580,497	1,168,491	587,995		

Figure: Leverage vs LTV-implied leverage.

▶ Leverage ranges from 1.4 to 1.9, similar to hedge fund leverage after GFC (≈ 1.5)
 ▶ Actual leverage is materially lower than the LTV-implied leverage (different scales)
 ▶ Leverage tracks crypto price index, with a roughly 3-month lag

Wallet-level regression results

	All	Winsorised	Largest	MostActive	Earliest
Leverage [/]	0.0845***	0.0834***	0.1528	0.2278***	0.1354***
	(12.430)	(12.427)	(1.5954)	(4.1065)	(3.6859)
BorrowRate	-0.0245***	-0.0231***	-0.2325***	-0.1347***	-0.0471
	(-2.9826)	(-2.8320)	(-3.1131)	(-2.7884)	(-1.2038)
Utilisation	0.0557***	0.0514***	0.4884*	0.3920**	0.0796
	(3.5172)	(3.2431)	(1.9176)	(2.3212)	(1.2778)
SignedVCPrice	-0.0543***	-0.0529***	-0.1340***	-0.0653***	-0.0341***
	(-15.823)	(-15.167)	(-3.5696)	(-2.8230)	(-2.5950)
Volatility	-0.0928**	-0.0930**	-0.2102*	-0.4501**	-0.1709**
	(-2.0358)	(-2.0287)	(-1.8085)	(-2.3455)	(-2.5120)
DepoRate	0.0802***	0.0741***	3.5843***	0.0037	0.0250
	(3.0497)	(2.8081)	(2.7549)	(0.0211)	(0.0975)
Time FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
User FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
No. Observations	6780434	6608334	83220	142725	190389
R-squared	0.0187	0.0177	0.0729	0.0566	0.0443

The impact of high borrower leverage on lending resilience

- DeFi loans are secured by overcollateralisation
- ▶ When collateral depreciates, lenders could be exposed to default risk
- ► To manage such risk, DeFi platforms allow anyone to liquidate a loan when the loan-to-value ratio rises above a certain threshold
- ▶ Are lending pools more risky when their borrowers have higher leverage?

Lending resilience measures

How leverage affects pool resilience

$PoolResilience_{j,t} = \alpha + \beta BorrowerLeverage_{j,t} + \theta Control_{j,t} + \gamma_j + \mu_t + \varepsilon_{j,t} $

	Pool Value-at-Risk			Liquidation share			
	All	Volatile coins	Stablecoins	All	Volatile coins	Stablecoins	
		Panel	A: Aave v2				
BorrowLeverage	0.9294***	0.6401***	1.0905***	0.0035	0.0050	0.0003	
	(6.1483)	(2.6581)	(7.5222)	(1.3124)	(1.1126)	(0.1588)	
Controls	\checkmark	\checkmark	\checkmark	· √ ´	\checkmark	\checkmark	
Time FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Pool FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
No. Observations	21177	13962	7215	22851	15591	7260	
R-squared	0.3564	0.1495	0.6633	0.0116	0.0146	0.0416	
		Panel I	B: Compound				
BorrowLeverage	1.2304***	1.1786***	0.4969*	0.0020	0.0022	-0.0032	
	(4.2947)	(2.9497)	(1.8653)	(1.4127)	(1.6657)	(-1.1204)	
Controls	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Time FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Pool FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
No. Observations	11147	7292	3855	11865	7939	3926	
R-squared	0.2800	0.3519	0.5292	0.0001	0.0026	0.0012	

Ambiguity of collateral that backs debt positions

- ▶ One unique feature of DeFi lending is the pooling of collateral *across users*
 - $\blacktriangleright\,$ Case 1: Only B2 is liquidated $\rightarrow\,$ Lenders can redeem subject to availability
 - \blacktriangleright Case 2: Both B1 and B2 are liquidated \rightarrow Lenders can redeem fully
 - \blacktriangleright Case 3: B1 is liquidated but B2 ends up with bad debt \rightarrow The lender that redeem late suffer the loss

Strategic collateral selection right ahead of liquidation

- Due to the pooling of collateral across borrowers, borrowers have information advantage over lenders on the quality of the collateral
- ▶ Borrowers can substitute **low** quality collateral for **high** quality one when they expect their debt positions to be liquidated (Chiu et al (2022))

Strategic collateral selection right ahead of liquidation

- Due to the pooling of collateral across borrowers, borrowers have information advantage over lenders on the quality of the collateral
- Borrowers can substitute low quality collateral for high quality one when they expect their debt positions to be liquidated (Chiu et al (2022))
- ▶ The granular wallet-level data allows us to investigate such strategic behaviours
- ▶ In total 1,526 wallets were liquidated in our sample
- ▶ For each one of these wallets, we calculate two measures of collateral volatility

$$CollateralVol_{i,t} = \frac{\sum_{K} (CollateralValue_{k,i,t} \times Vol_{k,t})}{\sum_{K} CollateralValue_{k,i,t}},$$

$$SimulatedVol_{i,t} = \frac{\sum_{K} (CollateralValue_{k,i,-29} \times Vol_{k,t})}{\sum_{K} CollateralValue_{K,i,-29} \times Vol_{K,t})},$$

$$(3)$$

$$\sum_{K} CollateralValue_{k,i,-29}, \qquad (3)$$

$$Diff_i = CollateralVol_{i,0} - SimulatedVol_{i,0}.$$
 (4)

▶ If $Diff_i > 0$ – it means that wallet *i* tilts towards more volatile collateral

Collateral selection when borrower leverage is high

- Most liquidated wallets did not modify their collateral composition
- ▶ Potential reason: LTV requirement of more volatile collateral is more stringent
- If LTV requirements reflect the collateral quality *perfectly*, such strategic behaviour should not take place
- \blacktriangleright However, some wallets tilted towards to more volatile collateral \rightarrow The aggresiveness is associated with leverage

High leverage is associated with more aggressive collateral selection

$$Diff_i = \beta_0 + \beta_1 Leverage_i + Debt_i + \varepsilon_i$$
(5)

 Both higher leverage and higher implied leverage are associated with more aggressive collateral selection

► The higher is the distance between leverage and implied leverage, there is more room for collateral selection

	Diff	Diff	Diff
Leverage	0.0078***		
	(4.561)		
Leverage ¹		0.0050***	
		(5.594)	
Leverage ¹ - Leverage			0.0100***
			(6.067)
Debt	-0.0001	-0.0002	0.0000
	(-0.595)	(-0.990)	(0.214)
No. Observation	145	145	145
R-squared	0.1754	0.1836	0.1383

The impact of high leverage on liquidity provision

- More than 25% of the borrowers in DeFi lending pools are also liquidity providers in decentralised exchanges (DEX)
- ▶ When liquidity providers have lower leverage, they provide less liquidity in DEX
- However, the impact of leverage is limited, as collateral is locked in lending pools

 $LiquidityProvision_{j,t} = \alpha + \beta BorrowerLeverage_{j,t} + \theta Control_{j,t} + \gamma_j + \mu_t + \varepsilon_{j,t}$ (6)

	(1)	(2)	(3)	(4)
Leverage	1.769e+04*			1.837e+04*
	(1.7010)			(1.7052)
Leverage [/]		-301.45		-1374.6
		(-0.0911)		(-0.3932)
BorrowRate			-4172.3	-3537.0
			(-0.4216)	(-0.3567)
Time FE	✓	\checkmark	\checkmark	\checkmark
UserFE	\checkmark	\checkmark	\checkmark	\checkmark
No. Observations	3026386	3026386	2950970	2950970
R-squared	0.0001	7.339e-08	4.499e-07	0.0001

Policy relevance: repo market design

▶ Can we replace market-makers/dealer banks with smart contracts/lending pools?

- ▶ Nothing related to crypto or Blockchain
- ▶ Just similar to algo traders (HFTs) replacing dealer banks in limit order book
- Can algo replace dealers in less liquid segments?
- Smart contracts could potentially alleviate pressures on dealers' b/s capacity
- Our analysis unveils the importance of several key design variables
 - Haircuts and rates
 - Liquidation procedures
 - Pooling or segregation of collateral across users
 - Link between leverage and liquidity

Appendix

DeFi lending vs repo

▶ Although DeFi lending is a type of collateralised borrowing, it has unique features

Table: Key differences between DeFi lending and repo/securities borrowing.

	DeFi lending	Repo/securities lending
Counterparty	pseudo-anonymous	identifiable
Collateral	pooled across borrowers	segregated
Borrow rate	pre-defined function of utilisation	flexible
Haircuts	pre-defined	flexible
Maturity	perpetual, borrower's option to repay early	short-term
Close-out process	automatically done by liquidators	non-defaulting party starts the process

DeFi lending also allows users to only deposit without borrowing

Data – Heterogeneity across wallets

► Very skew sample

Panel B: Heterogeneity across users							
Variable	Mean	Std	25%	Median	75%	Max	
Debt (\$)	580,497	13,258,569	72	4,038	36,644	1,123,007,715	
Assets (\$)	1,168,492	22,937,139	1,080	15,824	121,712	2,828,857,418	
Equity (\$)	587,995	11,825,693	793	10,069	76,905	1,833,842,618	
Leverage (Unit)	1.644	0.731	1.140	1.431	1.861	7.554	
Leverage ¹ (Unit)	4.229	1.130	3.428	4.000	5.068	7.692	

▶ We classify the following three groups of users:

- ▶ The largest: 1000 users with largest mean outstanding debt users on their active days
- ▶ The most active: 1000 users with highest number of loans taken out
- ▶ The earliest: first 1000 users that took out debt on each protocol

Group differences

- The largest/most active users appear to take higher leverage compared to others (often exceeding 2)
- ▶ The earliest users, however, tend to have low leverage (potential testing wallets)

Long and short users

- ▶ Leverage of the long and short users are negatively correlated
- ▶ VC price movements have opposite effects on long and short positions
- ▶ The majority are long users, but short users have higher leverage

$$Leverage_{i,t} = \beta_0 + \beta_1 Leverage'_{i,t} + \beta_2 BorrowRate_{i,t} + \beta_3 Utilisation_{i,t}$$
(7)
+ $\beta_4 SignedVCPrice_{i,t} + \beta_5 Volatility_{i,t} + \beta_6 DepoRate_{i,t} + \gamma_i + \mu_t + \varepsilon_{i,t}$

- ▶ Leverage': LTV-implied leverage, weighted by a user's outstanding debt $\rightarrow \beta_1 > 0$
- ▶ BorrowRate: a user's debt-weighted borrow rate $\rightarrow \beta_2 < 0$
- ▶ Utilisation: a user's debt-weighted pool utilisation rate $\rightarrow \beta_3 > 0$

 $Leverage_{i,t} = \beta_0 + \beta_1 Leverage_{i,t}^{I} + \beta_2 BorrowRate_{i,t} + \beta_3 Utilisation_{i,t}$ (7) + $\beta_4 SignedVCPrice_{i,t} + \beta_5 Volatility_{i,t} + \beta_6 DepoRate_{i,t} + \gamma_i + \mu_t + \varepsilon_{i,t}$

- ▶ Leverage': LTV-implied leverage, weighted by a user's outstanding debt $\rightarrow \beta_1 > 0$
- \blacktriangleright BorrowRate: a user's debt-weighted borrow rate \rightarrow β_2 < 0
- ▶ Utilisation: a user's debt-weighted pool utilisation rate $\rightarrow \beta_3 > 0$
- ▶ SignedVCPrice: a signed VC price index for a user's outstanding exposure (+ long VC) $\rightarrow \beta_4 < 0$

 $Leverage_{i,t} = \beta_0 + \beta_1 Leverage'_{i,t} + \beta_2 BorrowRate_{i,t} + \beta_3 Utilisation_{i,t}$ (7) + $\beta_4 SignedVCPrice_{i,t} + \beta_5 Volatility_{i,t} + \beta_6 DepoRate_{i,t} + \gamma_i + \mu_t + \varepsilon_{i,t}$

- \blacktriangleright Leverage': LTV-implied leverage, weighted by a user's outstanding debt $\rightarrow \beta_1 > 0$
- \blacktriangleright BorrowRate: a user's debt-weighted borrow rate \rightarrow β_2 < 0
- ▶ Utilisation: a user's debt-weighted pool utilisation rate $\rightarrow \beta_3 > 0$
- ▶ SignedVCPrice: a signed VC price index for a user's outstanding exposure (+ long VC) $\rightarrow \beta_4 < 0$
- \blacktriangleright Volatility: a user's collateral-weighted volatility $\rightarrow \beta_5 < 0$
- **>** DepoRate: a user's collateral-weighted deposit rate $\rightarrow \beta 6 < 0$

 $Leverage_{i,t} = \beta_0 + \beta_1 Leverage'_{i,t} + \beta_2 BorrowRate_{i,t} + \beta_3 Utilisation_{i,t}$ (7) + $\beta_4 SignedVCPrice_{i,t} + \beta_5 Volatility_{i,t} + \beta_6 DepoRate_{i,t} + \gamma_i + \mu_t + \varepsilon_{i,t}$

- \blacktriangleright Leverage': LTV-implied leverage, weighted by a user's outstanding debt $\rightarrow \beta_1 > 0$
- \blacktriangleright BorrowRate: a user's debt-weighted borrow rate \rightarrow $\beta_2 < 0$
- ▶ Utilisation: a user's debt-weighted pool utilisation rate $\rightarrow \beta_3 > 0$
- ▶ SignedVCPrice: a signed VC price index for a user's outstanding exposure (+ long VC) $\rightarrow \beta_4 < 0$
- \blacktriangleright Volatility: a user's collateral-weighted volatility $\rightarrow \beta_5 < 0$
- \blacktriangleright DepoRate: a user's collateral-weighted deposit rate $\rightarrow \beta 6 < 0$
- ▶ Standard errors: double-clustered (Peterson (2009))