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Abstract

The supervisor guides the bank’s risk-taking decisions by providing communication based

on his private information about the economy. The bank takes on high risk provided that,

based on its private information and the supervisor’s communication, it think the supervisor

is unlikely to object to high risk. Ultimately, the supervisor allows high risk only if he thinks

the economy is likely to be strong. We show that welfare can deteriorate when there is more

information on the bank’s side: the supervisor is too eager to respect the bank’s risk-taking

decisions when it is relatively more informed, which in turn dilutes his ability to induce the

bank to reveal its information. We propose two methods to mitigate this problem: (i) err on

the side of giving the supervisor too much power in case the bank does not meet supervi-

sory expectations and (ii) give the supervisor ex-ante commitment power over his supervisory

ruling.
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1 Introduction

Banking supervision would be easy, if risks within the economy are publicly known by the su-
pervisor and the banks. Difficulty level of the challenge increases when only banks know this
information perfectly. Supervisor faces the obstacle of incentives mismatch. However, the cruel
reality is that despite how much effort is put into learning about the underlying risks, neither the
supervisor nor the banking industry has perfect insight. Banks have very detailed views of their
own portfolios, but they cannot look into the business lines of their peers, not to mention market as
a whole. In the recent event of Archegos, dealers admitted to not having the ability to obtain com-
plete information on even their client portfolios 1. Supervisor, on the other hand, is able to probe
into portfolios across all of her supervised institutions, despite a lack of finer details. Information
is imperfect for all players. However, as if double sided information uncertainty is not challenging
enough, dynamics within the information structure rarely stay unchanged. Absolute and relative
strengths of private signals vary greatly as conditions of the market change. To achieve socially
desirable outcome, supervisor needs to actively take this information dynamics into account while
designing her public message to guide and monitor bank behaviors. While cost of supervisory
objection might stay constant given the infrastructure setup, supervision communication should be
an agile response to the fluid information conditions.

Our main contribution is to formally model this two-sided information uncertainty, and allow
supervisor to learn from actions taken by the banks. We solve for the optimal disclosure rule within
this framework. In our model, socially desirable outcome is when banks take the appropriate risk
management approach depending on the state of the world. If economic fundamental is strong,
then supervisor allows banks to be aggressive in risk management practices, as economy is more
likely to withstand idiosyncratic events. If economic fundamental is weak, then supervisor prefers
banks to be conservative, so that any idiosyncratic event will not trigger systemic fragility. There-
fore, supervisor wants to induce separation of banks’ behavior conditional on its private signals
and minimize the probability she has to costly object to banks’ actions. This notion of socially
desirable outcome leads to three main results. First, optimal disclosure strategy depends on the
information structure between supervisor and banks relative to rejection cost. There is no single

1Since Archegos broke up their trading relationships across multiple dealers, individual dealer was unable to figure
out the actual leverage the firm has put on in aggregate. Excessive leverage is believed to have caused the unravel of
Archegos. This inability to get aggregate risk information and manage accordingly has cost some dealers billions in
losses.
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optimal disclosure strategy that supervisor can follow in all situations. While cost of rejection
cannot change, information disclosure should be nimbly adjusted as economic conditions turn.
Second, while optimal persuasion rule can Pareto improve on the cases of no disclosure and full
disclosure, it cannot achieve first best outcome. By introducing just enough modification on su-
pervisor’s private signal, supervisor can induce more separation on the banks. However, there is
still going to be some pooling left, resulting in some welfare loss. Lastly, improvements in super-
visory and bank signals do not necessarily lead to more separation or an easier mechanism design
problem on cost of rejection.

In our model, banks always prefer to take the aggressive risk management approach regardless
of state of the economy. This ranges from calibrating model parameters to benign market condi-
tions to having flexible policy and procedures. After all, capital set aside by risk is capital that is not
generating returns. However, this aggressive action might have costly consequences when supervi-
sor has sufficient reasons to believe that economic conditions are not good enough to support such
practices. Dividend payments will be capped if supervisor objects to a capital plan during stress
testing. Findings, that will ultimately impact bank’s supervisory ratings, will be issued if bank fails
to meet expectations during a regulatory exam. Banks will then have to spend significant amount of
resources to remediate the matter requiring attention (MRA), or in worse situation matter requiring
immediate attention (MRIA). When belief is not optimistic enough to overcome such costs, banks
will reconsider and consequently take the conservative approach. Therefore, banks do not take the
aggressive risk management approach regardless of potential supervisor action. In fact, banks will
evaluate their chances of acceptance while making decisions.

Before banks take their action, supervisor has a chance to signal to the bank what she knows or
some modification of what she knows. This information is implicit in the scenarios she hands out
in a stress test, exam scope she delivers in a first day letter, and guidance she issues on topics of
interest to the industry. When supervisor has very accurate information, she should fully disclose
what she knows. It is better for banks to pool on action permissible under supervisory signal. This
eliminates inefficiencies from banks trying to use their own information that might result in need-
less rejection or lower capital utilization. Things become complicated when supervisor and bank
have imperfect information that neither is certain enough on its own to make accurate inference
about the underlying risks. This leaves banks a chance to change supervisory opinion on the econ-
omy with their collective actions. Banks want to behave in ways that boost supervisor’s confidence
about the economy, and consequently result in higher likelihood for their aggressive actions to
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pass. Supervisor has to disclose her information in such a way that she disciplines banks’ beliefs
to be thoughtfully conservative, but does not completely deter banks from appropriate risk taking
if separation could occur. Her goal can be achieved by introducing some messaging noise on the
good state of the world, when a positive public message is sent. The result here is a bit counter-
intuitive, that a good public message does not guarantee a good private signal for the supervisor.
It is precisely this uncertainty that urges banks to be mindful and separate, as it correctly infers a
positive probability with which supervisor received a bad signal and therefore will not allow ag-
gressive action sparingly. The increase in utilization of banks’ private information will result in
more separation. However, persuasion is unable to induce full separation. Banks still pool with
positive probability.

The final piece of banking supervision is setting the cost for when bank’s aggressive action is
objected by the supervisor. Cost setting is more rigid than the previously mentioned information
exchange, as legislature requires these consequences to be established ahead of time and stay fixed
until legislative changes occur. Some criticism around stress testing is that capping dividend and
suspending share repurchases are too severe as disciplinary measures. However, it is not at dis-
cretion of the supervisor to reset this cost from one period to the next. We show that, if cost of
rejection cannot be set just right and swiftly change to stay so, supervisor can use corresponding
optimal disclosure rule to mitigate some of the welfare losses. The excessive amount of caution
caused by high rejection cost, and aggression caused by low rejection cost can be partially mit-
igated through a carefully designed disclosure rule. While it is not possible to achieve the most
socially desirable outcome, strategic ambiguity introduced by supervisory disclosure will restore
some separation and hence improve welfare. We also show that improvement in signal precision
does not monotonically induce more separation.

2 Related Literature

We explore the optimal disclosure strategy for the supervisor under a setting of two-sided in-
formation uncertainty. In traditional setup, agent has perfect information and biased preference.
However, in this principal-agent problem, both the principal and the agent have private informa-
tion. Principal can choose to disclose a public message. Then the agent takes an action. Lastly, the
principal takes a follow up action, which might incur some cost to the agent.

This paper uses concepts of Bayesian persuasion as outlined in Kamenica and Gentzkow
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(2011). Supervisor commits to a disclosure rule, and induces a Bayesian updated distribution of
beliefs on the bank which advantages the supervisor. In addition, information structure in this pa-
per also relates to literature on information design Taneva (2019); Bergemann and Morris (2013).
Like this literature, this paper explores not only the impact of changing payoffs and allocations in
order to incentivize actions, but also the impact of changing information structure in order to alter
actions of the players. Information and persuasion design have previously been applied to voting
Alonso and Câmara (2016) and stress testing Goldstein and Leitner (2018) and Inostroza and Pavan
(2021). This paper applies the design setting to a new environment of banking supervision. Instead
of focusing on bank runs or stress testing in particular, we investigate how to incentivize best risk
management practice in a generalized setting. We also eliminated perfect information regarding
the state of the world. Both the supervisor and bank receive imperfect private information. The
new ingredient of the model is allowing supervisor an attempt to learn from the bank and increase
information utilization.

The most relevant paper is that of Leitner and Williams (2023), where the authors provide a
general characterization for the optimal disclosure rule for stress testing in the case of one bank
and one supervisor. Our paper differs from that in that it solves a less general model, but addresses
a setting where there are multiple banks not perfectly observing the state variable. Thus, there is
two-sided learning (banks learn from the supervisor and the supervisor learns from each individual
bank and the profile of bank risk management choices). As in Leitner and Williams (2023), we
find that full disclosure can yield lower payoffs to the supervisor. However, our mechanism is
different. In our model, while banks may take suboptimal action, the dominance of no disclosure
over full disclosure is the result of the incentive constraints and the properties of beliefs of the
banks. In addition, we find that full disclosure may dominate no disclosure (privacy) in certain
settings. In addition, as in Leitner and Williams (2023), we find that partial disclosure in the form
of a persuasion rule may be optimal. However, we find that this optimality of persuasion arises only
in cases when full disclosure yields higher payoff than no disclosure and induces partial separation.

This paper also considered the possibility of private feedback. Recent literature such as Eső
and Szentes (2007) and Bergemann et al. (2022) allow for different feedback responses depending
on agents and types. For example, Li and Shi (2017) showed that in auctions settings, releas-
ing different amounts of additional information to different buyer types dominates full disclosure
in terms of seller revenue. However, we keep away from discriminatory information disclosure.
While there could be improvements from tailoring information to recipients, it is against the reality
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of supervision faced by supervisors. On one hand, supervisors deliver consistent message across
institutions for fairness. On the other hand, industry participants talk to each other through formal
industry forums (such as ISDA for uncleared margins rule) and revolving doors. Informational
discrepancies are very short lived before they are challenged and leveled. For these reasons, we
decide to skip this channel and focus on informational tradeoff in a simpler setting.

There is also empirical literature studying the impact various sources of economic uncertainty
have on investment and output. Papers such as Baker et al. (2016) document an adverse effect
of policy uncertainty on key economic activity measures, such as investment and employment.
These findings are consistent with our results when supervisor has superior information. Optimal
outcome in this case calls for supervisor to fully disclose her information and minimize uncertainty
for the bank to just what is embedded in its private signal. Supervisor does not prefer separation
under all conditions. However, we show that in the case where information for the supervisor
is not good enough on its own, optimal disclosure deviates from full disclosure. Leaving some
signaling uncertainty in the public message actually induces separation in bank’s action conditional
on receiving different private signals, and therefore increases social welfare.
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3 The Model

There is a bank and a supervisor. The bank decides whether to take high risks with weak risk
management practices (“Aggressive”) or take low risks with strong risk management practices
(“Conservative”). The payoff from high risk endeavors potentially depends on the realization of
a random variable ω ∈ {G,B}. We think of ω as the state of the economy, which can be good
or bad. The bank’s payoff is uω and the supervisor’s payoff is vω. We think of vω as the value
of high risk endeavors to society. Without loss of generality, the payoff from conservative risk
management practices does not depend on ω and is in turn normalized to zero for both the bank
and the supervisor.2

We focus on the case where the following inequalities hold: uG = uB > 0 and vG > 0 > vB.
These assumptions encode the following two economic intuitions: (i) the bank prefers high risk
endeavors to conservative risk management practices in every state of the economy; but (ii) the
supervisor prefers high risk endeavors only if the state of the economy is good. In other words,
there is a conflict of interest between the bank and the supervisor. In this case, the payoff from
aggressive risk-taking when ω = G can be further normalized to one for both the bank and the
supervisor: uG = vG = 1. Given our assumptions on payoffs, uB = 1 and vB = −d, where d > 0.

Both the bank and the supervisor do not observe ω, but each of them receives a private signal
about the state of the economy. In other words, there is incomplete information.

On the one hand, the bank’s signal s takes one of two values, g or b. We let γ denote the
probability that the bank receives signal s = g (respectively, s = b) when ω = G (respectively,
ω = B). We assume that γ > 1

2
, so that the signal is indeed informative about the state. We also

assume that γ < 1, so that the bank does not perfectly observe ω.
On the other hand, the supervisor observes the probability t that ω = G. We refer to t, which

itself is distributed as F on [0, 1], as the supervisor’s “type.” Note that this formulation is equiv-
alent to the standard one in which we would specify the prior probability t0 that ω = G and the
supervisor’s signal s′ ∈ [s, s] that has CDF Fω conditional on ω.

After the bank decides on its risk level, the supervisor assesses the bank’s risk-management
practices, in which he observes its risk level and decides whether to allow or object to its risk-
management practices. If the supervisor allows the bank’s risk-management practices, it keeps the

2For our purposes, all that matters is the relative gains from taking on high risk endeavors, compared to holding
safe assets.

6



risk level intact as it chose. If the supervisor objects to the bank’s risk-management practices, it is
forced to readjust its risk level to be low. In this case, the bank incurs a cost c > 0, which could
represent the fact that when it is forced to sell its high-risk assets, such assets will likely sell at fire
sale prices. Another way to interpret the cost c is that it reflects the bank’s cost of reputation loss.
An implicit assumption here is that the supervisor never objects to a conservative bank.

Before the bank decides on its risk level, the supervisor discloses information about his type t.
The supervisor’s communication strategy is modeled following the recent literature on information
design. Formally, it consists of an arbitrary finite set M of messages and a function π : [0, 1] →
M , where π(t) denotes the message that the supervisor of type t picks to send. We let F (·|m)

represent the bank’s posterior belief distribution about the supervisor’s type t after observing m ∈
M . Without loss of generality, we assume Pr(m) > 0 for all m ∈ M . We let δ(m) ∈ {0, 1} denote
the bank’s (observed) risk level following message m ∈ M (where 1 and 0 stand for “Aggressive”
and “Conservative”, respectively).

In summary, the timing of the game is as follows. The supervisor publicly commits to his
communication strategy (M,π). Nature chooses ω, the bank observes s, and the regulator observes
t. The supervisor discloses information about t according to his communication strategy. The
bank decides whether to take high risks (“Aggressive”) or take low risks (“Conservative”). The
supervisor assesses the bank’s risk-management practices, i.e., if the bank is aggressive, he decides
whether to accept or object to its risk-management practices. Finally, the payoffs are realized.

3.1 Preliminaries

We begin by demonstrating that, insofar as we consider a pure-strategy equilibrium, there are at
most three different outcomes after the supervisor discloses information, which in turn implies that
we can restrict attention to his communication strategy that involves a ternary message space.

3.1.1 Supervisor’s Policy

Let q denote the probability that the supervisor thinks the state of the economy is good (ω = G). If
the bank is aggressive, the supervisor’s expected payoff is q− (1− q)d. If the bank is conservative,
the supervisor’s payoff is zero. Hence, he allows the bank’s aggressive risk-taking if and only if

q ≥ t̂ :=
d

1 + d
. (1)
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In other words, based solely on his private information, the supervisor allows aggressive risk-taking
if and only if t ≥ t̂.3

Let σS(t,m) denote the supervisor’s final (equilibrium) action, whether to allow the bank’s
aggressive risk-taking (σS(t,m) = “Allow”) or not (σS(t,m) = “Object”), depending on his type
t ∈ [0, 1] and his message m ∈ M .

Lemma 1 Suppose that, for a given communication strategy (M,π), there are more than one t in

the support of F (·|m). Then there exists t∗ ∈ (0, 1) such that σS(t,m) = “Accept′′ if t ≥ t∗, while

σS(t
′,m) = “Object′′ if t < t∗.

Proof. By Bayes’ rule,

Pr(ω = G|t, δ(m) = 1) =
Pr(δ(m) = 1|ω = G)t

Pr(δ(m) = 1|ω = G)t+ Pr(δ(m) = 1|ω = B)(1− t)

≤ Pr(ω = G|t′, δ(m) = 1) =
Pr(δ(m) = 1|ω = G)t′

Pr(δ(m) = 1|ω = G)t+ Pr(δ(m) = 1|ω = B)(1− t′)

The desired result then follows from the fact that the supervisor allows aggressive risk-taking if
and only if Pr(ω = G|t′, δ(m) = 1) ≥ t̂.

The lemma captures the intuition that the supervisor allows (object to) aggressive risk-taking
if a supervisor of more pessimistic (optimistic) type would allow (object to) it.

3.1.2 Bank’s Risk-Taking

Let p denote the probability that the bank thinks the supervisor will allow its aggressive risk-taking.
If the bank is aggressive, its expected payoff is p− (1− p)c. If the bank is conservative, its payoff
is zero. Hence, the bank is aggressive only if

p ≥ p̂ :=
c

1 + c
.4 (2)

3Note that we assume that the supervisor allows aggressive risk-taking if his perceived probability q of ω = G is
exactly equal to t̂. This assumption is benign for our characterization below, as the event occurs with probability zero
under the supervisor’s optimal communication strategy.

4We assume that the bank plays a pure strategy (aggressive or conservative, but not both) if its perceived probability
of σS(m) = “Allow” is exactly p̂. This assumption can be relaxed to allow for a mixed strategy by the bank. XXX
asdf XXX

8



Let σB(s,m) denote the bank’s choice of risk-taking, whether to be aggressive (σB(s,m) = 1)
or not (σB(s,m) = 0), conditional on receiving signal s ∈ {g, b} and observing message m ∈ M .

Lemma 2 Suppose that, for a given communication strategy (M,π), there are more than one t in

the support of F (·|m). Then σB(l,m) = 1 implies σB(h,m) = 1, while σB(h,m) = 0 implies

σB(l,m) = 0.

Proof. Let F (·|s,m) denote the bank’s posterior belief distribution about the supervisor’s type
conditional on receiving s ∈ {g, b} and observing m ∈ M . By Bayes’ rule, we have

F (t|g,m) =

∫ t

0
[γx+ (1− γ)(1− x)]dF (x|m)∫ 1

0
[γx+ (1− γ)(1− x)]dF (x|m)

and

F (t|b,m) =

∫ t

0
[(1− γ)x+ γ(1− x)]dF (x|m)∫ 1

0
[(1− γ)x+ γ(1− x)]dF (x|m)

Notice that γx+ (1− γ)(1− x) = (2γ − 1)x+ 1− γ is strictly increasing in x, while (1− γ)x+

γ(1− x) = γ − (2γ − 1)x is strictly decreasing in x, so there exists t∗ ∈ (0, 1) such that

γx+ (1− γ)(1− x)∫ 1

0
[γx+ (1− γ)(1− x)dF (x|m)

≤ (1− γ)x+ γ(1− x)∫ 1

0
[(1− γ)x+ γ(1− x)]dF (x|m)

if and only if t ≤ t∗. Since F (·|g,m) and F (·|b,m) have the same support, this implies that
F (t|g,m) ≤ F (t|b,m) for all t, with strict inequalities holding for any t in the interior of their
support. This means that Pr(t ≥ t∗|g,m) > Pr(t ≥ t∗|b,m) for any t∗ in the interior of the
support of F (·|g,m) and F (·|g,m). The desired result then follows from Lemma 1.

The lemma captures the idea that, if the bank would be willing to be aggressive (conservative)
after receiving a bad (good) signal and observing a message, it will be aggressive (conservative)
after receiving a good (bad) signal and observing the same message.

3.1.3 Simplifying the Supervisor’s Communication Strategy

Lemma 2 shows that there are at most three different outcomes after the bank observes m ∈ M : (i)
it will be aggressive regardless of its signal; (ii) it will be aggressive if its signal was good (s = g)
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and be conservative if its signal was bad (s = b); and (iii) it will be conservative regardless of its
signal. Importantly, this implies that the message space M can be partitioned into three subsets:

M1,1 := {m ∈ M |σB(g,m) = σB(b,m) = 1}

M1,0 := {m ∈ M |σB(g,m) = 1, σB(b,m) = 0}

M0,0 := {m ∈ M |σB(g,m) = σB(b,m) = 0}

Note that the supervisor cannot benefit by using multiple messages that lead to the same outcome;
in what follows, we can restrict attention, with no loss of generality, to strategy profiles in which the
supervisor sends (says) m ∈ M∗ := {(1, 1), (1, 0), (0, 0)}, where the bank is aggressive regardless
of its signal after observing m = (1, 1), only if its signal is good (s = g) after observing m = (1, 0),
and never after m = (0, 0).

4 Equilibrium Characterization

In this section, we characterize the unique equilibrium of the dynamic supervision game. We begin
by observing that the supervisor updates his perceived probability q of ω = G when he observes
the bank’s risk level only after having sent the message m = (1, 0). In this case, the supervisor
learns that the bank’s signal was good (bad) by observing that it is aggressive (conservative) in its
risk-taking. Let t be the supervisor’s type that would be indifferent between allowing and objecting
to aggressive risk-taking after learning that the bank received signal s = b:

(1− γ)t

(1− γ)t+ γ(1− t)
= t̂ ⇐⇒ t

1− t
=

γ

1− γ

t̂

1− t̂
=

γ

1− γ
d (3)

Similarly, let t be the supervisor’s type that would be indifferent between allowing and objecting
to aggressive risk-taking after learning that the bank received signal s = g:

γt

γt+ (1− γ)(1− t)
= t̂ ⇐⇒ t

1− t
=

1− γ

γ

t̂

1− t̂
=

1− γ

γ
d (4)

Note that t < t̂ < t: (i) the supervisor of type t ∈ [t, t̂), who would object to aggressive risk-taking
a priori, is swayed to allow it by the bank’s good news, and (ii) the supervisor of type t ∈ [t̂, t),
who would allow aggressive risk-taking a priori, is swayed to object to it by the bank’s bad news.
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On the other hand, the supervisor learns nothing about the bank’s signal after having sent the
message m = (1, 1), since in this case the bank is always aggressive regardless of its signal, so the
supervisor allows aggressive risk-taking if and only if t ≥ t̂.

In summary, a type-t supervisor obtains an expected payoff of γt − (1 − γ)(1 − t)d if t ≥ t

and zero otherwise from sending the message m = (1, 0), whereas he obtains an expected payoff
of t− (1− t)d if t ≥ t̂ and zero otherwise from sending the message m = (1, 1). Finally, note the
less interesting case, where the supervisor sends the message m = (0, 0) and the bank is always
conservative, so the supervisor takes no further action and his payoff is always zero. Of course,
all these statements implicitly assume that each message induces the bank to behave as expected.
These assumptions can formally be expressed as a group of incentive compatibility constraints for
the bank when it receives signal s ∈ {g, b} and message m ∈ M∗.

4.1 Supervisor’s Problem

We are now ready to write down the supervisor’s problem:

max
T (1,0),T (1,1)⊂[0,1]

∫
T (1,0)∩[t,1]

[γt− (1− γ)(1− t)d]dF (t) +

∫
T (1,1)∩[t̂,1]

[t− (1− t)d]dF (t) (5)

subject to T (1,0) ∩ T (1,1) = ∅ and∫
T (1,0)∩[t,1]

[γt+ (1− γ)(1− t)]dF (t) ≥ c

∫
T (1,0)∩[0,t)

[γt+ (1− γ)(1− t)]dF (t) (IC(1,0)
g )∫

T (1,0)∩[t,1]
[(1− γ)t+ γ(1− t)]dF (t) ≤ c

∫
T (1,0)∩[0,t)

[(1− γ)t+ γ(1− t)]dF (t) (IC(1,0)
b )∫

T (1,1)∩[t̂,1]
[γt+ (1− γ)(1− t)]dF (t) ≥ c

∫
T (1,1)∩[0,t̂)

[γt+ (1− γ)(1− t)]dF (t) (IC(1,1)
g )∫

T (1,1)∩[t̂,1]
[(1− γ)t+ γ(1− t)]dF (t) ≥ c

∫
T (1,1)∩[0,t̂)

[(1− γ)t+ γ(1− t)]dF (t) (IC(1,1)
b )∫

T (0,0)∩[t̂,1]
[γt+ (1− γ)(1− t)]dF (t) ≤ c

∫
T (0,0)∩[0,t̂)

[γt+ (1− γ)(1− t)]dF (t) (IC(0,0)
g )∫

T (0,0)∩[t̂,1]
[(1− γ)t+ γ(1− t)]dF (t) ≤ c

∫
T (0,0)∩[0,t̂)

[(1− γ)t+ γ(1− t)]dF (t) (IC(0,0)
b )

where T (0,0) := [0, 1] \ (T (1,0) ∪ T (1,1)).
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First, T (1,0) and T (1,1) denote disjoint subsets of [0, 1] such that the supervisor chooses to send
the message m = (1, 0) if he is of type t ∈ T (1,0) and m = (1, 1) if he is of type t ∈ T (1,1); the
supervisor must be choosing to sending the message m = (0, 0) otherwise, i.e., if he is of type
t ∈ [0, 1] \ (T (1,0) ∪ T (1,1)). This subset of [0, 1] is naturally denoted by T (0,0).

Second, (ICm
s ) represents the bank’s incentive constraint when it receives signal s ∈ {g, b}

and message m ∈ M∗. To understand these IC constraints, suppose, for example, that the bank has
received signal s = l and message m = (1, 0). In this case, the bank is willing to be conservative
if and only if it thinks the supervisor will allow aggressive risk-taking with probability less than
or equal to p̂. Recalling that only the supervisor of type t ≥ t allows aggressive risk-taking, this
condition is equivalent to

Pr(t ≥ t|s = b,m = (1, 0)) =

∫
T (1,0)∩[t,1][(1− γ)t+ γ(1− t)]dF (t)∫

T (1,0) [(1− γ)t+ γ(1− t)]dF (t)
≤ p̂

Substituting the expression for p̂ and rearranging terms, we have (IC(1,0)
b ). One can analogously

derive the other IC constraints. Perhaps surprisingly, however, the following three lemmas establish
that none of the IC constraints, except for (IC(1,0)

b ), are binding, substantially simplifying the
supervisor’s problem.

Lemma 3 Suppose that T (1,0), T (1,1) ⊂ [0, 1] satisfy incentive constraints (IC(1,1)
b ) and (IC(0,0)

g ).
Then they satisfy incentive constraints (IC(1,1)

g ) and (IC(0,0)
b ).

Proof. We show that (IC(1,1)
b ) implies (IC(1,1)

g ). To this end, first observe that∫
T (1,1)∩[t̂,1]

[(1− γ)t̂+ γ(1− t̂)]dF (t) ≥
∫
T (1,1)∩[t̂,1]

[(1− γ)t+ γ(1− t)]dF (t)

≥ c

∫
T (1,1)∩[0,t̂)

[(1− γ)t+ γ(1− t)]dF (t) ≥ c

∫
T (1,1)∩[0,t̂)

[(1− γ)t̂+ γ(1− t̂)]dF (t)

where the first and the last inequalities hold because (1− γ)t+ γ(1− t) = γ− (2γ− 1)t is strictly
decreasing in t for γ > 1

2
, while the second inequality is (IC(1,1)

b ) itself. Therefore, we have∫
T (1,1)∩[t̂,1]

dF (t) ≥ c

∫
T (1,1)∩[0,t̂)

dF (t)

12



In addition, observe that∫
T (1,1)∩[t̂,1]

[γt+ (1− γ)(1− t)]dF (t) ≥
∫
T (1,1)∩[t̂,1]

[γt̂+ (1− γ)(1− t̂)]dF (t)

and

c

∫
T (1,1)∩[0,t̂)

[γt̂+ (1− γ)(1− t̂)]dF (t) ≥ c

∫
T (1,1)∩[0,t̂)

[γt+ (1− γ)(1− t)]dF (t)

because γt + (1− γ)(1− t) = (2γ − 1)t + 1− γ is strictly increasing in t for γ > 1
2
. Combined

with the inequality above, it follows that (IC(1,1)
g ) holds.

Proceeding similarly as above, one can conclude that (IC(0,0)
g ) implies (IC(0,0)

b ).

The lemma captures the idea that, if the bank would be willing to be aggressive (conservative)
after receiving a bad (good) signal and observing m = (1, 1) (m = (0, 0)), it will be aggressive
(conservative) after receiving a good (bad) signal and observing m = (1, 1) (m = (0, 0)).

Lemma 4 At the optimal solution to the supervisor’s problem, T (1,1) ⊂ [t̂, 1] and T (0,0) ⊂ [0, t̂),

so incentive constraints (IC(1,1)
b ) and (IC(0,0)

g ) are not binding.

Proof. Suppose that V := T (1,1)∩[0, t̂) ̸= ∅ at the optimal solution. Consider T̃ (1,1) = T (1,1)\V
and T̃ (0,0) = T (0,0) ∪ V . This change relaxes (IC(1,1)

b ) and (IC(0,0)
g ) by lowering the right-hand

side of (IC(1,1)
b ), while raising the right-hand side of (IC(0,0)

g ). However, it leaves both (IC(1,0)
g )

and (IC(1,0)
b ) unaffected. For any t ∈ V , the supervisor obtains zero payoff if he were to send

m = (0, 0), which strictly exceeds t − (1 − t)d, i.e., what he obtains if he sends m = (1, 1).
Therefore, this change raises the supervisor’s expected payoff, which is a contradiction.

Proceeding similarly as above, one can prove that T (0,0) ⊂ [0, t̂), so (IC(0,0)
g ) is not binding.

The lemma captures the intuition that the supervisor will learn nothing about ω from observing
the bank’s risk level after having sent m = (1, 1) or m = (0, 0), so it is optimal for the supervisor
to recommend the bank to take a certain action regardless of its signal only if he is willing to allow
that action based solely on his prior information.

Lemma 5 Suppose that T (1,0) ⊂ [0, 1] satisfies the constraint (IC(1,0)
b ). Then there exists τ ∈ [0, t]

such that T (1,0) := [0, τ) ∪ (T 1,0 \ [0, t)) satisfies both (IC(1,0)
g ) and (IC(1,0)

b ).
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Proof. Let τ ∈ [0, t] be the unique value such that∫
T (1,0)∩[t,1]

[(1− γ)t+ γ(1− t)]dF (t) = c

∫ τ

0

[(1− γ)t+ γ(1− t)]dF (t)

Note that τ is well defined since the right-hand side is continuous and strictly increasing in τ , and

c

∫ 0

0

[(1− γ)t+ γ(1− t)]dF (t) ≤
∫
T (1,0)∩[t,1]

[(1− γ)t+ γ(1− t)]dF (t)

≤ c

∫
T (1,0)∩[0,t)

[(1− γ)t+ γ(1− t)]dF (t) ≤ c

∫ t

0

[(1− γ)t+ γ(1− t)]dF (t)

where the second inequality holds because T (1,0) satisfies the constraint (IC(1,0)
b ), while the last

inequality holds because T (1,0) ∩ [0, t) ⊂ [0, t]. By construction, T (1,0) := [0, τ) ∪ (T 1,0 \ [0, t))

satisfies (IC(1,0)
b ) with equality.

We now show that T (1,0) satisfies (IC(1,0)
g ). To this end, first observe that∫

T (1,0)∩[t,1]
[(1− γ)t+ γ(1− t)]dF (t) ≥

∫
T (1,0)∩[t,1]

[(1− γ)t+ γ(1− t)]dF (t)

= c

∫ τ

0

[(1− γ)t+ γ(1− t)]dF (t) ≥ c

∫ τ

0

[(1− γ)t+ γ(1− t)]dF (t)

where the two inequalities hold because (1− γ)t+ γ(1− t) = γ − (2γ − 1)t is strictly decreasing
in t for γ > 1

2
and because τ ≤ t, while the equality holds by construction. Therefore, we have∫

T (1,0)∩[t,1]
dF (t) ≥ c

∫ τ

0

dF (t)

In addition, observe that∫
T (1,0)∩[t,1]

[γt+ (1− γ)(1− t)]dF (t) ≥
∫
T (1,0)∩[t,1]

[γt+ (1− γ)(1− t)]dF (t)

c

∫ τ

0

[γt+ (1− γ)(1− t)]dF (t) ≥ c

∫ τ

0

[γt+ (1− γ)(1− t)]dF (t)

because γt + (1− γ)(1− t) = (2γ − 1)t + 1− γ is strictly increasing in t for γ > 1
2
. Combined

with the inequality above, it follows that (IC(1,0)
g ) holds.

14



Given that the bank is aggressive after receiving the message m = (1, 0) only when its signal
was good, the supervisor is willing to allow aggressive risk-taking if and only if his type is t ≥ t.
Were the supervisor to send m = (1, 0) only when t ≥ t, however, the bank would prefer to deviate
to be aggressive regardless of its signal after receiving that message. Hence, the supervisor needs
to commit to sending m = (1, 0) sometimes when t < t, in which case he will object to the bank’s
risk management practice if it is aggressive.

By pooling his types that would accept aggressive risk-taking (i.e., T (1,0)
Allow := T (1,0)∩ [t, 1] ̸= ∅)

with those that would object (i.e., T (1,0)
Object := T (1,0) ∩ [0, t) ̸= ∅) in sending the message m = (1, 0),

the supervisor induces the bank to act on its own private information, discouraging (encouraging)
the bank to be aggressive if its signal was bad (good). The main thrust of Lemma 5 is to show
that the most efficient way to maintain the bank’s incentives for different realizations of its signal
is pooling T

(1,0)
Allow with the extreme types of the supervisor that would object, i.e., those that are the

most sure of the bad state of the economy, so T
(1,0)
Object = [0, τ) for some τ ∈ [0, t].

The above lemmas establish that none of the IC constraints, except for (IC(1,0)
b ), are binding,

so the supervisor’s problem reduces to the following:

max
T

(1,0)
Allow ⊂[t,1],T (1,1)⊂[t̂,1],τ∈[0,t]

∫
T

(1,0)
Allow

[γt− (1− γ)(1− t)d]dF (t) +

∫
T (1,1)

[t− (1− t)d]dF (t) (6)

subject to T
(1,0)
Allow ∩ T (1,1) = ∅ and∫

T
(1,0)
Allow

[(1− γ)t+ γ(1− t)]dF (t) ≤ c

∫ τ

0

[(1− γ)t+ γ(1− t)]dF (t) (7)

4.2 Unconstrained Optimum

If we ignore the constraint (7) for a moment, that the optimal solution to (6) involves T (1,0)
Allow = [t, t)

and T (1,1) = [t, 1] is immediately clear from three facts: (i) γt− (1− γ)(1− t)d ≥ 0 for all t ≥ t,
(ii) t− (1− t)d ≥ 0 for all t ≥ t̂, and (iii)

γt− (1− γ)(1− t)d ≥ t− (1− t)d

if and only if t ≥ t. This is intuitive and expected. On the one hand, the supervisor of type t ∈ [t, t)

is a priori sufficiently uncertain about the state of the economy such that he would be influenced by
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the bank’s signal in determining his supervisory action, so the supervisor prefers the bank to act on
its own private information if he could dictate its behavior, i.e., he sends the message m = (1, 0).
On the other hand, the supervisor of type t ≥ t is a priori sufficiently confident that the state is good
such that he would allow aggressive risk-taking regardless of the bank’s signal, so the supervisor
prefers the bank to be aggressive regardless of its own private information if he could dictate its
behavior, i.e., he sends the message m = (1, 1).

The following proposition summarizes the above discussion, as well as providing the necessary
and sufficient condition for the supervisor’s unconstrained optimum to be feasible.

Proposition 1 The unconstrained optimal solution to (6) involves T (1,0)
Allow = [t, t) and T (1,1) = [t, 1]

(so T (1,0) = [0, τ)∪ [t, t) for some τ ∈ [0, t]). The supervisor’s unconstrained optimum is feasible,

or IC, if and only if∫ t

t

[(1− γ)t+ γ(1− t)]dF (t) ≤ c

∫ t

0

[(1− γ)t+ γ(1− t)]dF (t) (8)

Proof. If (8) holds, then there exists τ ∈ [0, t] such that

∫ t

t

[(1− γ)t+ γ(1− t)]dF (t) = c

∫ τ

0

[(1− γ)t+ γ(1− t)]dF (t)

so T
(1,0)
Allow = [t, t) and τ satisfy the incentive constraint (7). Similarly, if T (1,0)

Allow = [t, t) satisfies (7)
for some τ ∈ [0, t], (8) holds because

∫ τ

0
[(1−γ)t+γ(1− t)]dF (t) ≤

∫ t

0
[(1−γ)t+γ(1− t)]dF (t).

4.3 Constrained Solution

Now suppose that the supervisor’s unconstrained optimum is not feasible, i.e., (8) does not hold.
As a preliminary, note that it is optimal to set τ = t from the fact that the incentive constraint

(7) is binding. In this case, the supervisor would like to, but cannot, send the message m = (1, 0)

for every t ∈ [t, t] without violating the constraint. Increasing τ(< t) relaxes (7) by raising the
right-hand side of (7). However, it does not directly affect the objective function (6). Therefore,
this change strictly raises the supervisor’s payoff by allowing him to send the message m = (1, 0)

for a wider range of t ∈ [t, t) without violating the constraint.
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We now form the Lagrangian of the supervisor’s problem:

L =

∫
T

(1,0)
Allow

[γt− (1− γ)(1− t)d]dF (t) +

∫
T (1,1)

[t− (1− t)d]dF (t)

− λ{
∫
T

(1,0)
Allow

[(1− γ)t+ γ(1− t)]dF (t)− c

∫ t

0

[(1− γ)t+ γ(1− t)]dF (t)}

=

∫
T

(1,0)
Allow

{γt− (1− γ)(1− t)d− λ[(1− γ)t+ γ(1− t)]}dF (t)

+

∫
T (1,1)

[t− (1− t)d]dF (t)

+ λc

∫ t

0

[(1− γ)t+ γ(1− t)]dF (t)

(9)

where λ is the Lagrange multiplier on (7). Note that the last term in (9) affects L only through λ

and so can be regarded as a constant.
Let τ∗(λ) be the unique value of t such that

γt− (1− γ)(1− t)d− λ[(1− γ)t+ γ(1− t)] = 0 ⇐⇒ τ∗(λ) :=
(1− γ)d+ λγ

γ + (1− γ)d+ λ(2γ − 1)
.

It is easy to see that τ∗(λ) is strictly increasing in γ from t to γ
2γ−1

as λ rises from 0 to ∞. In
addition, let τ ∗(λ) be the unique value of t such that

γt−(1−γ)(1−t)d−λ[(1−γ)t+γ(1−t)] = t−(1−t)d ⇐⇒ τ ∗(λ) :=
γd− λγ

1− γ + γd− λ(2γ − 1)
.

It is easy to see that τ ∗(λ) is strictly decreasing in γ from t to −∞ as λ rises from 0 to 1−γ+γd
2γ−1

.
Finally, let Λ be the unique value of λ such that

τ ∗(Λ) = τ∗(Λ) ⇐⇒ Λ :=
(2γ − 1)d

γ + (1− γ)d
.

It is easy to verify that τ ∗(Λ) = τ∗(Λ) = t̂.
Given the discussion above, λ ∈ [0,Λ] guarantees that t ≤ τ∗(λ) ≤ τ ∗(λ) ≤ t. Thus,

[τ∗(λ), τ
∗(λ)) can be interpreted as the optimal subinterval of [t, t) for which the supervisor chooses

to send the message m = (1, 0) taking as given the marginal cost λ of violating the constraint (7)
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from the fact that, for every t ∈ [τ∗(λ), τ
∗(λ)), γt− (1− γ)(1− t)d− λ[(1− γ)t+ γ(1− t)] ≥ 0

and γt− (1− γ)(1− t)d− λ[(1− γ)t+ γ(1− t)] > t− (1− t)d. We further note that increasing
λ would shrink [τ∗(λ), τ

∗(λ)), because the supervisor cannot send m = (1, 0) as often as he used
to when t ∈ [t, t) without violating the constraint (7), and [τ∗(λ), τ

∗(λ)) eventually collapses to
t̂. This is because the supervisor is the most uncertain about the optimal supervisory action when
he is of type t = t̂, which is why he is indifferent between allowing and objecting to aggressive
risk-taking, so the supervisor would optimally choose to send m = (1, 0) in a region concentrated
around t̂ if he had to select a particular subinterval of [t, t).

The optimal value of λ ∈ [0,Λ], which we denote by λ∗, is the value such that∫ τ∗(λ)

τ∗(λ)

[(1− γ)t+ γ(1− t)]dF (t) = c

∫ t

0

[(1− γ)t+ γ(1− t)]dF (t) (10)

Note that λ∗ is well defined since the left-hand side is continuous and strictly decreasing in λ, and

∫ τ∗(0)

τ∗(0)

[(1−γ)t+γ(1−t)]dF (t) =

∫ t

t

[(1−γ)t+γ(1−t)]dF (t) > c

∫ t

0

[(1−γ)t+γ(1−t)]dF (t)

≥
∫ t̂

t̂

[(1− γ)t+ γ(1− t)]dF (t) =

∫ τ∗(Λ)

τ∗(Λ)

[(1− γ)t+ γ(1− t)]dF (t)

where the first inequality holds because (8) does not hold.
The following proposition summarizes the preceding discussion.

Proposition 2 Suppose that (8) does not hold. Then the IC constraint (7) is binding (i.e., it holds

with equality), and the constrained optimal solution to (6) involves T
(1,0)
Allow = [τ∗(λ

∗), τ ∗(λ∗)),

T (1,1) = [τ ∗(λ∗), 1], where τ∗(λ) ∈ [t, t̂], τ ∗(λ) ∈ [t̂, t], and λ∗ ∈ [0,Λ] is the solution to (10)
(so T (1,0) = [0, t) ∪ [τ∗(λ

∗), τ ∗(λ∗))).

4.4 Comparative Statics

The following proposition, which is our main result in this paper, stresses that the informativeness
of the bank’s signal has a non-monotonic effect on welfare.

Proposition 3 If γ is sufficiently close to 1
2
, then the supervisor’s expected payoff increases in γ.

For γ sufficiently close to 1, the supervisor’s expected payoff decreases in γ.
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Proof. First, we show that there exists γ > 1
2

such that (8) holds if γ < γ, which follows from

lim
γ→ 1

2

∫ t

t

[(1− γ)t+ γ(1− t)]dF (t) = 0

< c

∫ t̂

0

[(1− γ)t+ γ(1− t)]dF (t) = lim
γ→ 1

2

c

∫ t

0

[(1− γ)t+ γ(1− t)]dF (t)

where the two equalities hold because limγ→ 1
2
t = limγ→ 1

2
t = t̂. By Proposition 1, whenever

γ < γ, the supervisor’s unconstrained optimum is feasible, so he obtains an expected payoff of∫ t

t
[γt− (1− γ)(1− t)d]dF (t) +

∫ 1

t
[t− (1− t)d]dF (t), which can be easily shown to be strictly

increasing in γ. The first part of the lemma follows.
Similarly, there exists γ∗ < 1 such that (8) does not hold if γ > γ∗, which follows from

lim
γ→1

∫ t

t

[(1− γ)t+ γ(1− t)]dF (t) = lim
γ→ 1

2

∫ 1

0

[(1− γ)t+ γ(1− t)]dF (t)

> 0 = lim
γ→1

c

∫ t

0

[(1− γ)t+ γ(1− t)]dF (t)

where the two equalities hold because limγ→1 t = 0 and limγ→1 t = 1. By Proposition 2, whenever
γ > γ∗, the IC constraint is binding, so the pair (τ∗, τ ∗) is uniquely determined by (10). Since
the right-hand side approaches 0 as γ tends to 1, both τ ∗ and τ∗ converge to t̂. Therefore, the
supervisor’s expected payoff approaches

∫ 1

t̂
[t − (1 − t)d]dF (t) as γ → 1. Finally, note that the

supervisor’s indirect utility as a function of γ is minimized at γ = 1, which concludes the proof.

Proposition 3 accentuates that an increase in γ has two distinct effects, the information effect
and control dilution. The former refers to the fact that an increase in γ (the informativeness of the
bank’s signal) enables the supervisor to make more informed supervisory decisions when he can
induce the bank to reveal its signal and, therefore, improves welfare, i.e., increases the supervisor’s
expected payoff. If the supervisor is of type t ∈ [t, t), then his expected payoff attainable with the
bank acting on its signal rises from an increase in γ because it implies a lower probability of the
bank erring. An increase in γ has another effect of expanding the ideal information-acquisition
region [t, t), so the supervisor would benefit from observing the bank’s signal in determining the
supervisory action for a wider range of priors about the state of the economy.

19



Of course, the potential welfare improvement is only attainable insofar as the supervisor can
induce ideal behavior in the bank by satisfying the incentive constraint (7). When the bank’s signal
becomes more informative, this task becomes more challenging, because the supervisor relies less
on his prior beliefs. In particular, an increase in γ contracts the default-objection region [0, t),
which reduces the probability that the bank thinks the supervisor will object to its aggressive risk-
taking. When its perceived probability is sufficiently low, the bank has strong incentives to be
aggressive regardless of its signal, restraining which forces the supervisor to shrinking the actual

information-acquisition region [τ∗, τ
∗). This immediately implies that the bank reveals information

less frequently and, therefore, welfare deteriorates, i.e., the supervisor’s expected payoff decreases.
We refer to this effect as control dilution.

To see this clearly, suppose that γ is so close to 1 that [0, t) is vanishingly small. Were the
supervisor to send m = (1, 0) over some strictly positive-length subinterval of [t, t) (which is fea-
sible because [t, t) expands to fill the entire unit interval), the bank can infer that he is almost surely
of type t ≥ t, so it would prefer to deviate to be aggressive regardless of its signal after receiving
that message. Hence, the supervisor needs to commit to sending m = (1, 0) over a vanishingly
small subinterval of [t, t) for him to have plausible deniability. In essence, an increase in γ (the
informativeness of the bank’s signal) implies the supervisor’s greater eagerness to persuade the
bank to act on its signal, which ironically can compromise his ability to do so.

The preceding discussion indicates that whether the IC constraint for the bank is binding or not
plays a key role in determining which of the two opposing effects of γ (the information effect and
control dilution) dominates. This explains why, in Proposition 3, the information effect dominates
when γ is relatively small, while the control-dilution effect dominates when γ is relatively large.
If γ is small, then the supervisor mostly relies on his prior belief to make the supervisory decision,
so the IC constraint for the bank is not binding and the information effect dominates, improving
welfare as γ increases. If γ is large, then the supervisor is already dependent enough on the bank’s
private information so that the IC constraint for the bank is binding and the control-dilution effect
dominates, reducing welfare as γ increases.

4.4.1 An Example

To help visualize Proposition 3 and the mechanism behind this result, suppose the supervisor’s
type t is uniform on [0, 1]. Figure 1 illustrates how the supervisor’s equilibrium expected payoff
depends on γ (the informativeness of the bank’s signal).
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Figure 1: Optimal values of the key quantities as functions of the informativeness parameter γ
assuming the supervisor’s type t is uniform on [0, 1]. The parameter values used for this figure are
c = 1 and d = 1.

The top panel of Figure 1 shows that t (the upper portion of the blue solid curve) is upward-
sloping, while t (the lower portion of the blue solid curve) is downward-sloping, consistent with
an increase in γ expanding the ideal information-acquisition region [t, t) as explained above. The
top panel shows another interesting feature: τ ∗ (the upper portion of the red dashed curve) is
initially upward-sloping but eventually downward-sloping, while τ∗ (the lower portion of the red
dashed curve) is initially downward-sloping but eventually upward-sloping, ergo an increase in γ is
initially expanding but eventually shrinking the actual information-acquisition region [τ∗, τ

∗). As γ
increases, notice that the default-objection region [0, t) contracts, which makes it more challenging
to satisfy the incentive constraint (7). This forces the supervisor to eventually shrinking the actual
information-acquisition region despite the ever expanding ideal information-acquisition region.
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The bottom panel of Figure 1 plots welfare, i.e., the supervisor’s expected payoff, as γ in-
creases. It starts at 0.25 utils when γ = 0.5, peaks at 0.321 utils when γ = 0.844, and finishes at
0.25 utils when γ = 1. On the one hand, an increase in γ initially expands (eventually shrinks)
the actual information-acquisition region [τ∗, τ

∗), which in turn implies that the bank reveals infor-
mation more (less) frequently and, therefore, welfare improves (deteriorates). On the other hand,
an increase in γ has another effect of enabling the supervisor to make more informed supervi-
sory decisions within the actual information-acquisition region and, therefore, welfare continues
to improve beyond the point at which [τ∗, τ

∗) starts to shrink.

4.4.2 Comparison to the Cheap-Talk Equilibrium

Our model gives the supervisor the commitment power over his choice of a message as a function
of his type. To investigate the welfare benefits of this power, it is instructive to compare our results
to cheap-talk equilibria.

As usual, there are multiple equilibria when the supervisor communicates with the bank via
cheap talk. First, babbling, which means no information is transmitted, is always an equilibrium
outcome. A more efficient cheap-talk equilibrium, in which some information is communicated,
can be immediately constructed, as formally stated in the following proposition.

Proposition 4 There always exists a cheap-talk equilibrium in which the supervisor sends the

message m = (1, 1) if he is of type t ≥ t̂ and m = (0, 0) otherwise; the bank is aggressive if and

only if it receives message m = (1, 1), in which case the supervisor will allow it to be aggressive.

Proof. Recall that, based solely on his private information, the supervisor will allow aggressive
risk-taking if and only if t ≥ t̂. Given that the bank knows that t ≥ t̂ (t < t̂) conditional on
observing m = (1, 1) (m = (0, 0)), it is straightforward that the optimal action is to be aggressive
(conservative) regardless of its signal.5 Given what he expects the bank to do, the supervisor of
type t ≥ t̂ (t < t̂) prefers ex ante aggressive (conservative) risk-taking, ergo sending m = (1, 1)

(m = (0, 0)) as the bank expects him to do.

Notice that in the limit as γ → 1
2

or γ → 1, the supervisor’s expected payoff shrinks to his
expected payoff in the cheap-talk equilibrium presented in Proposition 4. In the former case, the

5The bank can be aggressive when it is not supposed to be (after observing m = (0, 0)) off the equilibrium path.
We restrict attention to equilibria in which the supervisor’s off-equilibrium-path belief does not change from his type
(i.e., he expects the state to be good with probability t).
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supervisor chooses not to induce the bank to act on its own information ([t, t) shrinks toward {t̂}),
while in the latter case, he cannot induce the bank to act on its own information ([τ∗, τ ∗) shrinks
toward {t̂}). Compared to this cheap-talk equilibrium, commitment power on the supervisor’s side
improves welfare as long as the bank has some but not perfect information about the state.

In fact, however, the supervisor can do better than the equilibrium presented in Proposition 4
even when he can send only a cheap-talk message. Suppose that (8) holds, so the supervisor’s
unconstrained optimum is feasible with commitment power on the supervisor’s side. In this case,
the supervisor’s unconstrained optimum is feasible even when he can only engage in cheap talk
precisely because it can implement the supervisor’s ideal outcome for every one of his type: while
the bank could be aggressive for some t < t, the supervisor can costlessly object to this, forcing
the bank to become conservative.

In contrast, if (8) does not hold, the informative cheap-talk equilibrium presented in Proposi-
tion 4 is unique. In this case, the supervisor cannot incentivize the bank to act on its information for
all t ∈ [t, t), so he ought to send m ̸= (1, 0) for some of these types. Without commitment power,
the supervisor of such types would prefer to deviate ex post, sending the message m = (1, 0). For
example, the constrained optimal solution involves the supervisor committing to send the message
m = (1, 1) if t ≥ τ ∗ and m = (0, 0) if t ∈ [t, τ∗); without this commitment, the supervisor would
prefer to deviate ex post if he turns out to be of type t ∈ [t, τ∗) ∪ [τ ∗, t) by sending m = (1, 0).

The following proposition summarizes the preceding discussion.

Proposition 5 Suppose that (8) holds. Then the supervisor’s unconstrained optimum is a cheap-

talk equilibrium: the supervisor sends the message m = (1, 1) if he is of type t ≥ t, m = (1, 0) if

he is of type t ∈ [0, τ) ∪ [t, t) for some τ ∈ [0, t], and m = (0, 0) otherwise.

In light of this proposition, we conclude that a sufficient condition for the supervisor’s commit-
ment power to improve welfare is that γ ∈ (γ∗, 1), where γ∗ ∈ (1

2
, 1) such that γ > γ∗ implies (8)

does not hold:6 γ > γ∗ ensures that the supervisor is actually using the commitment power vested
in him, while γ < 1 ensures that the supervisor has plausible deniability he will not always allow
aggressive risk-taking even if he is of type t ∈ [t, t). As depicted in Figure 1, welfare improve-
ments from commitment power is non-monotonic in γ: welfare is increasing at γ = γ∗ (the point
at which [τ∗, τ

∗) starts to shrink) before it eventually shrinks to the level of welfare in the unique
informative cheap-talk equilibrium in the limit as γ → 1.

6We show that such γ∗ does exist in the proof of Proposition 3.
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4.5 Bank’s Cost in Case of Supervisory Objection

One important lesson from our analysis is that whether the IC constraint for the bank is binding or
not plays a key role in determining the welfare implications of more information on the bank’s side.
An increase in γ (the informativeness of the bank’s signal) enables the supervisor to make more
informed supervisory decisions and, therefore, improves welfare primarily when he can induce
the bank to reveal its signal, i.e., the IC constraint for the bank is not binding. Looking at (8),
it is immediate that increasing c (the bank’s cost in case of supervisory objection) relaxes the IC
constraint, ergo improving welfare until the IC constraint is no longer binding.

Proposition 6 Let v(c) denote the supervisor’s maximal attainable payoff when the bank is faced

with a cost c in case of supervisory objection. Then v(c) is strictly increasing for c ∈ [0, c∗) and is

equal to v(c∗) for c ≥ c∗, where c∗ > 0 is the value of c such that (8) holds with equality.

Intuitively, the bank is worried not only about how frequently the supervisor will object to its
aggressive risk-taking (

∫ t

0
[(1−γ)t+γ(1− t)]dF (t)), but also how costly those supervisory objec-

tions will be (c), so increasing c can offset the control-dilution effect of increased γ. Our analysis
taking c as given reflects the fact that the supervisor can be agile in his communication strategy,
but he cannot freely adjust the bank’s cost in case of supervisory objection. Yet the supervisor does
have the power to occasionally change such costs for the bank by passing legislation to promote
financial stability. For example, the Dodd-Frank Act made all banks with assets above $50 billion
subject to a much more aggressive supervisory regime, effectively raising c for mid-sized banks;
in 2018, Congress scaled back Dodd-Frank, raising the threshold for increased scrutiny of banks
from $50 billion to $250 billion, effectively reducing c for mid-sized banks.

To the extent that the supervisor has some control over the bank’s cost, Proposition 6 has an
important policy implication. It is optimal to err on the side of giving the supervisor too much
power in case he finds that the bank does not meet supervisory expectations, i.e., err on the side
of setting c too high. If c is too high (i.e., c > c∗), the supervisor could simply scale back how
frequently he will object to aggressive risk-taking after having sent m = (1, 0)—T

(1,0)
Object = [0, τ)

for some τ ∈ [0, t] that is decreasing in c.7 If c is too low (i.e., c < c∗), not only is the supervisor’s
unconstrained optimum infeasible (leaving welfare on the table), but the economy is exposed to
experiencing a welfare loss in case the bank experiences a sudden boost in its private information.

7We show that such τ does exist in the proof of Proposition 1.
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5 Additional Commitment to the Supervisory Ruling

Our baseline model does not give the supervisor commitment power over his follow-up supervisory
ruling. In particular, the supervisor allows aggressive risk-taking only when it is ex post efficient:
he will allow the bank’s aggressive risk-taking if and only if he is of type t ≥ t (t ≥ t̂) after having
sent m = (1, 0) (m = (1, 1)). We now turn attention to the case where the supervisor also has
commitment power over his follow-up supervisory ruling. Specifically, the supervisor can commit
a priori to allowing (objecting to) aggressive risk-taking even if it is ex post inefficient: he will
object to the bank’s aggressive risk-taking, for example, if he is of type t ∈ T

(1,0)
Object ∩ [t, t) although

he prefers ex post to allow it. Importantly, we will find that this additional commitment enables
the supervisor to largely offset the negative welfare effect of more information on the bank’s side
such that welfare is now monotonically increasing with the informativeness of the bank’s signal.

Following similar steps as in the baseline model, it is straightforward to show that it is still the
case that T (1,1) = T

(1,1)
Allow ⊂ [t̂, 1] and T (0,0) = T

(0,0)
Object ⊂ [0, t̂) (and T

(1,1)
Object = T

(1,1)
Allow = ∅). It is also

straightforward to show that it is still the case that T (1,0) = [0, τ) ∪ T
(1,0)
Allow, where T

(1,0)
Object = [0, τ)

and T
(1,0)
Allow ∩ T

(1,0)
Object = ∅. The most crucial difference from the baseline case is that τ can exceed t.

Again, the supervisor’s problem reduces to the following:

max
T

(1,0)
Allow ,T (1,1)⊂[t̂,1],τ∈[0,t̂]

∫
T

(1,0)
Allow

[γt− (1− γ)(1− t)d]dF (t) +

∫
T (1,1)

[t− (1− t)d]dF (t) (11)

subject to T
(1,0)
Allow ∩ T (1,1) = T

(1,0)
Allow ∩ [0, τ) = ∅ and∫

T
(1,0)
Allow

[(1− γ)t+ γ(1− t)]dF (t) ≤ c

∫ τ

0

[(1− γ)t+ γ(1− t)]dF (t) (12)

Clearly, if the supervisor’s unconstrained optimum is feasible in the baseline model, it is also
feasible with this additional commitment power. Given this observation, it suffices to consider the
case where (8) does not hold. As in the baseline model, it continues to hold that T (1,0)

Allow = [τ∗∗, τ
∗∗)

for some τ∗∗ ∈ (t, t̂) and τ ∗∗ ∈ (t̂, t). In contrast to our baseline model, it is straightforward to
prove that τ = τ∗∗—T

(1,0)
Object = [0, τ∗∗) and T (1,0) = [0, τ ∗∗). Recall that, in the baseline model,

T
(1,0)
Object = [0, t) and T (0,0) = [t, τ∗). Intuitively, the supervisor of type t ∈ [t, τ∗) is tempted to

respect the bank’s decisions if they were reflective of its signal: sending m = (1, 0) in this region
would make the IC constraint even more binding, so he resorted to sending m = (0, 0) instead.

25



Now, the supervisor is able to put this region to good use with the additional commitment
power vested in him. The supervisor can overcome the temptation to respect the bank’s risk-taking
decision if t turns out to be in [t, τ∗) by committing to object to aggressive risk-taking in this
region even after having sent m = (1, 0). That is, the bank will still end up with conservative
risk-taking when t ∈ [t, τ∗), but now, [t, τ∗) can be annexed to the default-objection region [0, t),
which raises the probability that the supervisor will object to aggressive risk-taking after having
sent m = (1, 0). Increasing τ beyond t to τ∗ relaxes (8) by raising the right-hand side of (8). This
immediately implies the supervisor can expand the actual information-acquisition region [τ∗, τ

∗)

beyond what is feasible in the baseline model, helping to fight off control dilution.
The following lemma summarizes the preceding discussion.

Lemma 6 Suppose that (8) does not hold. Then the IC constraint (12) is binding (i.e., it holds

with equality), and the optimal solution to (11) involves T (1,0)
Allow = [τ∗∗, τ

∗∗), T
(1,0)
Object = [0, τ∗∗), where

τ∗∗ ∈ (t, t̂), τ ∗∗ ∈ (t̂, t) (so T (1,0) = [0, τ ∗∗) and T (0,0) = ∅).

This lemma allows us to simplify the supervisor’s problem even further to the following:

max
τ∗∗∈(t,t̂),τ∗∗∈(t̂,t)

∫ τ∗∗

τ∗∗

[γt− (1− γ)(1− t)d]dF (t) +

∫ 1

τ∗∗
[t− (1− t)d]dF (t) (13)

subject to ∫ τ∗∗

τ∗∗

[(1− γ)t+ γ(1− t)]dF (t) = c

∫ τ∗∗

0

[(1− γ)t+ γ(1− t)]dF (t) (14)

Note that the only difference from our baseline model is that the integral on the right-hand side is
taken over [0, τ∗∗], not over [0, t]. For any given set of parameters (c, d) and initial beliefs of the
supervisor (F ), the right-hand side of (14) is larger than that of (10). This implies that [τ∗∗, τ ∗∗) can
be larger than [τ∗, τ

∗), which is the case when λ is smaller (equivalently, less binding IC constraint).
This is precisely how commitment power to the supervisory ruling can benefit the supervisor.

In fact, this additional commitment suffices to ensure that welfare is monotonically increasing
with the informativeness of the bank’s signal.

Proposition 7 The supervisor’s expected payoff with additional commitment is strictly monotone-

increasing in γ on the interval (1
2
, 1).
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Proof. Fix γ > 1
2
, and consider the optimal solution (τ∗∗, τ

∗∗) to (13). This solution is feasible
for any γ′ > γ if and only if

∫ τ∗∗

τ∗∗
[(1− γ′)t+ γ′(1− t)]dF (t) ≤ c

∫ τ∗∗
0

[(1− γ′)t+ γ′(1− t)]dF (t),
which holds if and only if ∫ τ∗∗

τ∗∗

(1− 2t)dF (t) ≤ c

∫ τ∗∗

0

(1− 2t)dF (t)

because γ′ > γ and (14) is satisfied. Rearranging the terms in (14) to obtain an expression for c,
and plugging this into the inequality above, tedious but straightforward simplification shows that
the inequality above is equivalent to∫ τ∗

0

tdF (t |t ∈ [0, τ∗∗)) ≤
∫ τ∗

τ∗

tdF (t |t ∈ [τ∗∗, τ
∗∗)) ,

which is obviously true. Therefore, (τ∗∗, τ ∗∗) is still a feasible solution for any γ′ > γ.
It is easy to check that this solution gives a strictly higher expected payoff to the supervisor

when γ increases to γ′ > γ. Therefore, the supervisor’s optimal expected payoff must be strictly
monotone-increasing in γ on the interval (1

2
, 1).

Proposition 7 shows that, unlike in our baseline model, the supervisor can do strictly better
than with cheap talk even in the limit as γ → 1. At the same time, note that Lemma 6 implies
that it still is the case that the supervisor cannot attain his unconstrained optimum. But more
importantly, the proposition shows that, with additional commitment to the supervisory ruling,
more information does result in higher welfare. The policy implication is, thus, that it is important
to give the supervisor enough commitment power, particularly in the form of supervisory ruling.
Commitment power over how much he discloses about his own information alone can be impotent
in case the bank experiences a sudden boost in its private information.

5.1 An Example

To help visualize Proposition 7, suppose the supervisor’s type t is uniform on [0, 1]. Figure 2
illustrates how the supervisor’s equilibrium expected payoff in the case of additional commitment
over the final ruling depends on γ (the informativeness of the bank’s signal) in the bottom panel,
as well as how the actual information-acquisition region [τ∗∗, τ

∗∗) in this case depends on γ in the
top panel. We plot all of these quantities with magenta dash-dotted lines. In the figure, for clearer
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comparison, we also plot the corresponding quantities in the baseline model with red dashed lines
and the corresponding quantities in the unconstrained optimum with blue solid lines.

Figure 2: Optimal values of the key quantities when the supervisor also has commitment power
over his final ruling (magenta dash-dotted lines) as functions of the informativeness parameter γ
assuming the supervisor’s type t is uniform on [0, 1]. The parameter values used for this figure are
c = 1 and d = 1.

As discussed above, Figure 2 confirms that, unlike in the baseline model, the supervisor can
do strictly better than with cheap talk even in the limit as γ → 1. While it still is the case that the
supervisor cannot attain his unconstrained optimum, the figure shows that the supervisor can do
surprisingly well even in the limit as γ → 1—the welfare gap from the unconstrained optimum
is visibly small. In fact, it is easy to check that, as shown in the figure, τ ∗∗ → 1 in this limit,
so the supervisor can induce the bank to reveal its information whenever he is optimistic enough.
Thus, the figure vividly reinforces the policy implication of Proposition 7: it is important to give
the supervisor enough commitment power, particularly in the form of supervisory ruling.

28



6 Discussion

[John: Please discuss the policy implications here. Feel free to go wild as we’ll tame this section
together later anyway. Ideally, let’s write a page or two.]
[John: Can we say anything about the Collapse of SVB?]

7 Conclusion

We characterize optimal disclosure rules for the supervisor under various information settings. The
framework we present allows for informational uncertainty on both sides of the table, which is the
reality of banking supervision. Supervisor’s optimal messaging strategy depends on the informa-
tion structure. We show that a carefully designed message is vitally important when neither the
supervisor nor the bank has clear advantage in what they know. Moreover, agile banking super-
vision should react to not only information structure, but also the design of punishment regime.
Since change in punishment regime occurs less frequently than changes in information, supervisor
should reassess what she and banks know as much as it is needed. Her optimal disclosure strategy
is determined by signal informativeness relative to rejection cost.

The channel of interbank information competition makes individual bank no longer pivotal.
Critical number of banks is needed to convince supervisor of a good state. Supervisor therefore
gives less consideration to action of any single bank. Peer discipline gives individual bank less
incentive to act aggressively. Therefore, informational design can no longer correct flawed mech-
anism design to the extent that gets equilibrium back to first best outcome, as was the case for 1
bank. In limited scenarios (B and F), where persuasion does better than both full and no disclo-
sure, it only achieves more separation but not full separation. For all the rest scenarios, persuasion
cannot improve upon no disclosure. This channel also creates discontinuity in supervisory action
given banks’ actions. Thus improvement in signal precision does not monotonically induce more
separation and increase welfare.
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A Allowing for Mixed Strategy in the Bank’s Risk-Taking

Consider the following trinary signal: M = {−, σB,+} for some σB ∈ [0, 1], where σB represents
the probability that B chooses a = 1 conditional on m = σB and sB = ℓ. (It can be shown that
the case where B chooses a = 1 with an interior probability conditional on sB = h can never be
optimal.)

The subsequent analysis proceeds as follows. First, given σB, we characterize the optimal
signal. Then, we optimize over σB.

Optimal signal given σB. Let t(σB) ∈ [t, θ] be the value such that

t(σB)

1− t(σB)
=

θ

1− θ

1− γ + γσB

γ + (1− γ)σB

.

It is easy to see that t(σB) increases from t to σB as σB rises from 0 to 1.
S obtains her ideal outcome given σB if and only if

(1− κ)

∫ t

t(σB)

[t(1− γ) + (1− t)γ] dF (t) ≤ κ

∫ t(σB)

0

[t(1− γ) + (1− t)γ] dF (t).

The left-hand side is decreasing in σB, while the right-hand side is increasing in σB. Therefore,
there exists σB such that S obtains her ideal outcome given σB if and only if σB ≥ σB.

If the above condition fails then S faces the following problem (after all reductions):

max

∫ 1

τ∗
[t · 1 + (1− t)(−d)] dF (t)+

∫ τ∗

τ∗

[t(γ + (1− γ)σB) + (1− t)(1− γ + γσB)(−d)] dF (t)

subject to

(1− κ)

∫ τ∗

τ∗

[t(1− γ) + (1− t)γ] dF (t) ≤ κ

∫ t(σB)

0

[t(1− γ) + (1− t)γ] dF (t).

and τ∗ ≥ t(σB). The case studied just above corresponds to the case where neither constraint
binds.

We can first ignore the second constraint, namely, that τ∗ ≥ t(σB). Then, for each λ > 0 let
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τ∗(λ) be the value of t such that

t(γ + (1− γ)σB) + (1− t)(1− γ + γσB)(−d) = λ [t(1− γ) + (1− t)γ] .

Similarly, let τ ∗(λ) be the value of t such that

t · 1 + (1− t)(−d) = t(γ + (1− γ)σB) + (1− t)(1− γ + γσB)(−d)− λ [t(1− γ) + (1− t)γ] .

Then it suffices to find λ that satisfies

(1− κ)

∫ τ∗(λ)

τ∗(λ)

[t(1− γ) + (1− t)γ] dF (t) ≤ κ

∫ t(σB)

0

[t(1− γ) + (1− t)γ] dF (t).

According to the numerical example, the second constraint does not bind (i.e., τ∗ ≥ t(σB)) if σB

is sufficiently small. Let σB be the largest value of σB such that τ∗(λ(σB)) ≥ t(σB).
If σB ∈ (σB, σB) then τ∗ = t(σB). Therefore, γ∗ can be found from

(1− κ)

∫ τ∗(λ)

t(σB)

[t(1− γ) + (1− t)γ] dF (t) ≤ κ

∫ t(σB)

0

[t(1− γ) + (1− t)γ] dF (t).

In short, there seem to be the following three cases.

• σB ≥ σB: S obtains her ideal outcome (so τ∗ = t(σB) and τ ∗ = t).

• σB ∈ [σB, σB): In this case, (perhaps) τ∗ = t(σB) and τ ∗ < t.

• σB < σB: In this case, τ∗ > t(σB) and τ ∗ < t.

Optimizing over σB. According to some numerical examples, the optimal solution can be in
(0, σB) or in (σB, σB). See the following two figures.
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